12 research outputs found

    Children's working understanding of the knowledge gained from seeing and feeling

    Get PDF
    In three Experiments, (N = 48 3- to 4-year olds; 100 3- to 5-year olds; 54 4-yearolds), children who could see or feel a target toy, recognized when they had sufficient information to answer “Which one is it?” and when they needed additional access. They were weaker at taking the informative modality of access when the choice was between seeing more of a partially visible toy and feeling it; at doing so when the target was completely hidden; and at reporting seeing or feeling as their source of knowledge of the target’s identity having experienced both. Working understanding of the knowledge gained from seeing and feeling (identifying the target efficiently) was not necessarily in advance of explicit understanding (reporting the informative source)

    Rationality as a Goal of Education

    Get PDF
    Abstract Those who believe education should involve more than learning facts often stress either (a) development or (b) thinking skills. A focus on development as a goal of education typically entails a conception of knowledge as organismic, holistic, and internally generated. In contrast, thinking skills programs commonly assume a mechanistic, reductionist perspective in which good thinking consists of some finite number of directly teachable skills. A conception of rationality as a goal of education is proposed that incorporates the complementary strengths and avoids the limitations of the developmental and thinking skills approaches. Rationality is defined as the self-reflective, intentional, and appropriate coordination and use of genuine reasons in generating and justifying beliefs and behavior. Philosophically, rationality is a justifiable goal of education, not only because it is a means to worthwhile ends but because it is an important end in itself and because it can be promoted via non-indoctrinative means. A psychological account of progressive rationality is provided that postulates continuing multiple interactions of (a) domain-specific developmental stages, (b) the learning of specific thinking skills, and (c) content-specific knowledge. Suggestions are made for fostering rationality at various educational levels. Finally, it is argued that the proposed conception of rationality as a goal of education complements and clarifies a variety of other educational goals

    Agency affects adults', but not children's, guessing preferences in a game of chance

    Get PDF
    Adults and children have recently been shown to prefer guessing the outcome of a die roll after the die has been rolled (but remained out of sight) rather than before it has been rolled. This result is contrary to the predictions of the competence hypothesis (Heath & Tversky, 1991), which proposes that people are sensitive to the degree of their relative ignorance and therefore prefer to guess about an outcome it is impossible to know, rather than one that they could know, but do not. We investigated the potential role of agency in guessing preferences about a novel game of chance. When the experimenter controlled the outcome, we replicated the finding that adults and 5- to 6-year-old children preferred to make their guess after the outcome had been determined. For adults only, this preference reversed when they exerted control over the outcome about which they were guessing. The adult data appear best explained by a modified version of the competence hypothesis that highlights the notion of control or responsibility. It is proposed that potential attributions of blame are related to the guesser's role in determining the outcome. The child data were consistent with an imagination-based account of guessing preferences

    Children’s thinking about counterfactuals and future hypotheticals as possibilities

    No full text
    Two experiments explored whether children's correct answers to counterfactual and future hypothetical questions were based on an understanding of possibilities. Children played a game in which a toy mouse could run down either 1 of 2 slides. Children found it difficult to mark physically both possible outcomes, compared to reporting a single hypothetical future event, "What if next time he goes the other way …" (Experiment 1: 3–4-year-olds and 4–5-year-olds), or a single counterfactual event, "What if he had gone the other way …?" (Experiment 2: 3–4-year-olds and 5–6-year-olds). An open counterfactual question, "Could he have gone anywhere else?," which required thinking about the counterfactual as an alternative possibility, was also relatively difficult
    corecore