266 research outputs found

    Effects of Disorder on Superconductivity of Systems with Coexisting Itinerant Electrons and Local Pairs

    Full text link
    We study the influence of diagonal disorder (random site energy) of local pair (LP) site energies on the superconducting properties of a system of coexisting local pairs and itinerant electrons described by the (hard-core) boson-fermion model. Our analysis shows that the properties of such a model with s-wave pairing can be very strongly affected by the diagonal disorder in LP subsystem (the randomness of the LP site energies). This is in contrast with the conventional s-wave BCS superconductors, which according to the Anderson's theorem are rather insensitive to the diagonal disorder (i.e. to nonmagnetic impurities). It has been found that the disorder effects depend in a crucial way on the total particle concentration n and the LP level position DELTA_o and depending on the parameters the system can exhibit various types of superconducting behaviour, including the LP-like, intermediate (MIXED)and the 'BCS'-like. In the extended range of {n,DELTA_o} the superconducting ordering is suppressed by the randomness of the LP site energies and the increasing disorder induces a changeover from the MIXEDlike behaviour to the BCS-like one, connected with abrupt reduction of T_c and energy gap to zero. However, there also exist a definite range of {n,DELTA_o} in which the increasing disorder has a quite different effect: namely it can substantially enhance T_c or even lead to the phenomenon which can be called disorder induced superconductivity. Another interesting effect is a possibility of a disorder induced bound pair formation of itinerant electrons, connected with the change-over to the LP-like regime.Comment: 18 pages, 12 figure

    Why the Tsirelson bound?

    Full text link
    Wheeler's question 'why the quantum' has two aspects: why is the world quantum and not classical, and why is it quantum rather than superquantum, i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable answer to this question proposed by Pawlowski et al (2009), who provide an information-theoretic derivation of the Tsirelson bound from a principle they call 'information causality.'Comment: 17 page

    Dust reference frame in quantum cosmology

    Full text link
    We give a formulation of quantum cosmology with a pressureless dust and arbitrary additional matter fields. The system has the property that its Hamiltonian constraint is linear in the dust momentum. This feature provides a natural time gauge, leading to a physical hamiltonian that is not a square root. Quantization leads to Schr{\"o}dinger equation for which unitary evolution is directly linked to geodesic completeness. Our approach simplifies the analysis of both Wheeler-deWitt and loop quantum cosmology (LQC) models, and significantly broadens the applicability of the latter. This is demonstrated for arbitrary scalar field potential and cosmological constant in LQC.Comment: 8 pages, iopart style + BibTe

    Charge orderings in the atomic limit of the extended Hubbard model

    Full text link
    The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams include three types of charge ordered phases and the nonordered phase. The system exhibits very rich structure and shows unusual multicritical behavior. In the limiting case of tij = 0, the EHM is equivalent to the pseudospin model with single-ion anisotropy 1/2U, exchange interaction W in an effective magnetic field (mu-1/2U-zW). This classical spin model is analyzed using the MC method for the canonical ensemble. The phase diagram is compared with the known results for the Blume-Capel model.Comment: 9 pages, 10 figure

    On non-existence of static vacuum black holes with degenerate components of the event horizon

    Full text link
    We present a simple proof of the non-existence of degenerate components of the event horizon in static, vacuum, regular, four-dimensional black hole spacetimes. We discuss the generalisation to higher dimensions and the inclusion of a cosmological constant.Comment: latex2e, 9 pages in A

    Separable Hilbert space for loop quantization

    Get PDF
    We discuss, within the simplified context provided by the polymeric harmonic oscillator, a construction leading to a separable Hilbert space that preserves some of the most important features of the spectrum of the Hamiltonian operator. This construction may be applied to other polymer quantum mechanical systems, including those of loop quantum cosmology, and is likely generalizable to certain formulations of full loop quantum gravity. It is helpful to sidestep some of the physically relevant issues that appear in that context, in particular those related to superselection and the definition of suitable ensembles for the statistical mechanics of these types of systems.This work has been supported by the Spanish MICINN and MINECO research Grants No. FIS2009-11893, No. FIS2011-30145-C03-02, No. FIS2012-34379 and the Consolider-Ingenio 2010 Program CPAN (CSD2007-00042), Chilean FONDECYT regular Grant No. 1140335 as well as by the National Center for Science (NCN) of Poland research Grants No. 2012/05/E/ST2/03308 and No. 2011/02/A/ST2/00300. T. P. also acknowledges the financial support of UNAB via internal project No. DI-562-14/R
    • …
    corecore