568 research outputs found

    Lipoplatin Formulation Review Article

    Get PDF
    Patented platform technologies have been used for the liposomal encapsulation of cisplatin (Lipoplatin) into tumor-targeted 110 nm (in diameter) nanoparticles. The molecular mechanisms, preclinical and clinical data concerning lipoplatin, are reviewed here. Lipoplatin has been successfully administered in three randomized Phase II and III clinical trials. The clinical data mainly include non-small-cell lung cancer but also pancreatic, breast, and head and neck cancers. It is anticipated that lipoplatin will replace cisplatin as well as increase its potential applications. For the first time, a platinum drug has shown superiority to cisplatin, at least in non-squamous non-small-cell lung cancer as reported in a Phase III study which documented a simultaneous lowering of all of the side effects of cisplatin

    Algebraic-matrix calculation of vibrational levels of triatomic molecules

    Full text link
    We introduce an accurate and efficient algebraic technique for the computation of the vibrational spectra of triatomic molecules, of both linear and bent equilibrium geometry. The full three-dimensional potential energy surface (PES), which can be based on entirely {\it ab initio} data, is parameterized as a product Morse-cosine expansion, expressed in bond-angle internal coordinates, and includes explicit interactions among the local modes. We describe the stretching degrees of freedom in the framework of a Morse-type expansion on a suitable algebraic basis, which provides exact analytical expressions for the elements of a sparse Hamiltonian matrix. Likewise, we use a cosine power expansion on a spherical harmonics basis for the bending degree of freedom. The resulting matrix representation in the product space is very sparse and vibrational levels and eigenfunctions can be obtained by efficient diagonalization techniques. We apply this method to carbonyl sulfide OCS, hydrogen cyanide HCN, water H2_2O, and nitrogen dioxide NO2_2. When we base our calculations on high-quality PESs tuned to the experimental data, the computed spectra are in very good agreement with the observed band origins.Comment: 11 pages, 2 figures, containg additional supporting information in epaps.ps (results in tables, which are useful but not too important for the paper

    Near-field Pollutant Dispersion in an Actual Urban Area: Analysis of the Mass Transport Mechanism by High-Resolution Large Eddy Simulation

    Get PDF
    Large-Eddy Simulation of near-field pollutant dispersion from stacks on the roof of a low-rise building in downtown Montreal is performed. Two wind directions are considered, with different wind-flow patterns and plume behavior. The computed mean concentration field is analyzed by means of the convective and turbulent (including subgrid-scale) mass fluxes. This decomposition provides insight into the dispersion process and allows an evaluation of common turbulent transport models used with the Reynolds-Averaged Navier–Stokes approach, such as the standard gradient-diffusion hypothesis. Despite the specific character of the flow and dispersion patterns due to the complex geometry of the urban area under study, some similarities are found with the generic case of dispersion around an isolated simple building. Moreover, the analysis of dispersion in downtown Montreal is facilitated by the physical insight gained by the study of the generic case. In this sense, the present study supports the use of generic, simplified cases to investigate and understand environmental processes as they occur in real and more complex situations. Reciprocally, the results of this applied study show the influence on the dispersion process of the rooftop structures and of the orientation of the emitting building with respect to the incoming wind flow, providing directions for further research on generic cases

    CFD Simulation of Near-Field Pollutant Dispersion on a High-Resolution Grid: A Case Study by LES and RANS for a Building Group in Downtown Montreal

    Get PDF
    Turbulence modeling and validation by experiments are key issues in the simulation of micro-scale atmospheric dispersion. This study evaluates the performance of two different modeling approaches (RANS standard k-ε and LES) applied to pollutant dispersion in an actual urban environment: downtown Montreal. The focus of the study is on near-field dispersion, i.e. both on the prediction of pollutant concentrations in the surrounding streets (for pedestrian outdoor air quality) and on building surfaces (for ventilation system inlets and indoor air quality). The high-resolution CFD simulations are performed for neutral atmospheric conditions and are validated by detailed wind-tunnel experiments. A suitable resolution of the computational grid is determined by grid-sensitivity analysis. It is shown that the performance of the standard k-ε model strongly depends on the turbulent Schmidt number, whose optimum value is case-dependent and a priori unknown. In contrast, LES with the dynamic subgrid-scale model shows a better performance without requiring any parameter input to solve the dispersion equation

    O-band QKD link over a multiple ONT loaded carrier-grade GPON for FTTH applications

    Full text link
    We have successfully integrated an O-band commercial Quantum-Key-Distribution (QKD) system over a lit GPON testbed that replicates a carrier-grade Fiber-to-the-Home (FTTH) optical access network with multiple ONTs to emulate real-life FTTH operational deployments.Comment: 3 page

    Current Indications of Secondary Enucleation in Retinoblastoma Management: A Position Paper on Behalf of the European Retinoblastoma Group (EURbG).

    Get PDF
    Secondary enucleation (SE) puts an irreversible end to eye-preserving therapies, whenever their prolongation is expected to violate the presumed state of metastatic grace. At present, it must be acknowledged that clear criteria for SE are missing, leading to empiric and subjective indications commonly related to disease progression or relapse, disease persistence masking the optic nerve head or treatment-related complications obscuring the fundus view. This absence of evidence-based consensus regarding SE is explained by the continuously moving frontiers of the conservative management as a result of diagnostic and therapeutic advances, as well as by the lack of studies sufficiently powered to accurately stratify the risk of metastasis in conservatively treated patients. In this position paper of the European Retinoblastoma Group (EURbG), we give an overview of the progressive shift in the indications for SE over the past decades and propose guidelines to assist decision-making with respect to when SE becomes imperative or recommended, with corresponding absolute and relative SE indications. Further studies and validation of biologic markers correlated with the risk of metastasis are expected to set more precisely the frontiers of conservative management and thus consensual criteria for SE in the future
    corecore