932 research outputs found
Atmospheric constituent measurements using commercial 747 airliners
NASA is implementing a Global Atmospheric Monitoring Program to measure the temporal and spatial distribution of particulate and gaseous constituents related to aircraft engine emissions in the upper troposphere and lower stratosphere (6 to 12 Km). Several 747 aircraft operated by different airlines flying routes selected for maximum world coverage will be instrumented. An instrumentation system is being assembled and tested and is scheduled for operation in airline service in late 1974. Specialized instrumentation and an electronic control unit are required for automatic unattended operation on commercial airliners. An ambient air sampling system was developed to provide undisturbed outside air to the instruments in the pressurized aircraft cabin
Flight test of a pressurization system used to measure minor atmospheric constituents from an aircraft
A flight evaluation of an ambient air sample pressurization system was conducted at altitudes between 6 and 12 km. The system regulated the sample pressure to 10.15 + or - 0.1 N/sq n and provided sample flow to three gas analysis instruments included in the system. Ozone concentrations measured by two instruments employing different techniques varied from about 30 parts per billion by volume (ppbv) to over 350 ppbv, and the two ozone monitors agreed to within 20 ppbv. A carbon dioxide analyzer indicated modifications required for future installations
Classical simulation of noninteracting-fermion quantum circuits
We show that a class of quantum computations that was recently shown to be
efficiently simulatable on a classical computer by Valiant corresponds to a
physical model of noninteracting fermions in one dimension. We give an
alternative proof of his result using the language of fermions and extend the
result to noninteracting fermions with arbitrary pairwise interactions, where
gates can be conditioned on outcomes of complete von Neumann measurements in
the computational basis on other fermionic modes in the circuit. This last
result is in remarkable contrast with the case of noninteracting bosons where
universal quantum computation can be achieved by allowing gates to be
conditioned on classical bits (quant-ph/0006088).Comment: 26 pages, 1 figure, uses wick.sty; references added to recent results
by E. Knil
Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer
SuperSpec is a novel on-chip spectrometer we are developing for multi-object,
moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter
and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer
employs a filter bank architecture, and consists of a series of half-wave
resonators formed by lithographically-patterned superconducting transmission
lines. The signal power admitted by each resonator is detected by a lumped
element titanium nitride (TiN) kinetic inductance detector (KID) operating at
100-200 MHz. We have tested a new prototype device that is more sensitive than
previous devices, and easier to fabricate. We present a characterization of a
representative R=282 channel at f = 236 GHz, including measurements of the
spectrometer detection efficiency, the detector responsivity over a large range
of optical loading, and the full system optical efficiency. We outline future
improvements to the current system that we expect will enable construction of a
photon-noise-limited R=100 filter bank, appropriate for a line intensity
mapping experiment targeting the [CII] 158 micron transition during the Epoch
of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes
+ Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy VI
Structures of technetium and rhenium complexes
Investigations in the 99mTc chemistry are stimulated by the search for new radiopharmaceuticals for nuclear medical applications. To understand the coordination mode of Tc with various complexing agents, macroscopic studies of technetium coordination chemistry are often performed using the low energy Ăź-emitting radionuclide 99Tc, which has a much longer half life (t1/2 = 2.12 x 105 years) than 99mTc, in the mg level. Investigations of Re coordination chemistry are done in conjunction with Tc studies because Re possesses chemical properties similar to those of Tc. For some chemical tasks, Re provides a non-radioactive alternative to work with Tc radioisotopes. In addition, 186Re and 188Re are of great interest to nuclear medicine as they possess nuclear properties favorable for use in therapeutic radiopharmaceuticals. Our investigations of Tc and Re coordination chemistry are toward this goal. A large series of technetium and rhenium complexes resulted from this studies have been characterized by X-ray crystal structure determinations. This survey covers the structural investigations performed by P.Leibnitz and G.Reck (BAM) from 1992 till now. It summarizes results obtained in the Rossendorf technetium group and is not intended to compete with the well-written reviews published so far
Quantum computation with linear optics
We present a constructive method to translate small quantum circuits into
their optical analogues, using linear components of present-day quantum optics
technology only. These optical circuits perform precisely the computation that
the quantum circuits are designed for, and can thus be used to test the
performance of quantum algorithms. The method relies on the representation of
several quantum bits by a single photon, and on the implementation of universal
quantum gates using simple optical components (beam splitters, phase shifters,
etc.). The optical implementation of Brassard et al.'s teleportation circuit, a
non-trivial 3-bit quantum computation, is presented as an illustration.Comment: LaTeX with llncs.cls, 11 pages with 5 postscript figures, Proc. of
1st NASA Workshop on Quantum Computation and Quantum Communication (QCQC 98
Elementary gates for quantum computation
We show that a set of gates that consists of all one-bit quantum gates (U(2))
and the two-bit exclusive-or gate (that maps Boolean values to ) is universal in the sense that all unitary operations on
arbitrarily many bits (U()) can be expressed as compositions of these
gates. We investigate the number of the above gates required to implement other
gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2)
transformation to one input bit if and only if the logical AND of all remaining
input bits is satisfied. These gates play a central role in many proposed
constructions of quantum computational networks. We derive upper and lower
bounds on the exact number of elementary gates required to build up a variety
of two-and three-bit quantum gates, the asymptotic number required for -bit
Deutsch-Toffoli gates, and make some observations about the number required for
arbitrary -bit unitary operations.Comment: 31 pages, plain latex, no separate figures, submitted to Phys. Rev.
A. Related information on http://vesta.physics.ucla.edu:7777
MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer
SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and
submillimeter wavelength astronomy. Its very small size, wide spectral
bandwidth, and highly multiplexed readout will enable construction of powerful
multibeam spectrometers for high-redshift observations. The spectrometer
consists of a horn-coupled microstrip feedline, a bank of narrow-band
superconducting resonator filters that provide spectral selectivity, and
Kinetic Inductance Detectors (KIDs) that detect the power admitted by each
filter resonator. The design is realized using thin-film lithographic
structures on a silicon wafer. The mm-wave microstrip feedline and spectral
filters of the first prototype are designed to operate in the band from 195-310
GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed
to operate at hundreds of MHz and are fabricated from titanium nitride with a
Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip,
passes through the frequency-selective filter, and is finally absorbed by the
corresponding KID where it causes a measurable shift in the resonant frequency.
In this proceedings, we present the design of the KIDs employed in SuperSpec
and the results of initial laboratory testing of a prototype device. We will
also briefly describe the ongoing development of a demonstration instrument
that will consist of two 500-channel, R=700 spectrometers, one operating in the
1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update
On Bell measurements for teleportation
In this paper we investigate the possibility to make complete Bell
measurements on a product Hilbert space of two two-level bosonic systems. We
restrict our tools to linear elements, like beam splitters and phase shifters,
delay lines and electronically switched linear elements, photo-detectors, and
auxiliary bosons. As a result we show that with these tools a never failing
Bell measurement is impossible.Comment: 7 pages, 3 figures. Final version to appear in Phys.Rev.
The design and characterization of a 300 channel, optimized full-band millimeter filterbank for science with SuperSpec
SuperSpec is an integrated, on-chip spectrometer for millimeter and sub-millimeter astronomy. We report the approach, design optimization, and partial characterization of a 300 channel filterbank covering the 185 to 315 GHz frequency band that targets a resolving power R ~ 310, and fits on a 3.5Ă—5.5 cm chip. SuperSpec uses a lens and broadband antenna to couple radiation into a niobium microstrip that feeds a bank of niobium microstrip half-wave resonators for frequency selectivity. Each half-wave resonator is coupled to the inductor of a titanium nitride lumped-element kinetic inductance detector (LEKID) that detects the incident radiation. The device was designed for use in a demonstration instrument at the Large Millimeter Telescope (LMT)
- …