10,123 research outputs found

    The Complex of Solutions of the Nested Bethe Ansatz. The A_2 Spin Chain

    Get PDF
    The full set of polynomial solutions of the nested Bethe Ansatz is constructed for the case of A_2 rational spin chain. The structure and properties of these associated solutions are more various then in the case of usual XXX (A_1) spin chain but their role is similar

    Algorithms for entanglement renormalization

    Get PDF
    We describe an iterative method to optimize the multi-scale entanglement renormalization ansatz (MERA) for the low-energy subspace of local Hamiltonians on a D-dimensional lattice. For translation invariant systems the cost of this optimization is logarithmic in the linear system size. Specialized algorithms for the treatment of infinite systems are also described. Benchmark simulation results are presented for a variety of 1D systems, namely Ising, Potts, XX and Heisenberg models. The potential to compute expected values of local observables, energy gaps and correlators is investigated.Comment: 23 pages, 28 figure

    A Generalized Q-operator for U_q(\hat(sl_2)) Vertex Models

    Full text link
    In this paper, we construct a Q-operator as a trace of a representation of the universal R-matrix of Uq(sl^2)U_q(\hat{sl}_2) over an infinite-dimensional auxiliary space. This auxiliary space is a four-parameter generalization of the q-oscillator representations used previously. We derive generalized T-Q relations in which 3 of these parameters shift. After a suitable restriction of parameters, we give an explicit expression for the Q-operator of the 6-vertex model and show the connection with Baxter's expression for the central block of his corresponding operator.Comment: 22 pages, Latex2e. This replacement is a revised version that includes a simple explicit expression for the Q matrix for the 6-vertex mode

    Extended Scaling for the high dimension and square lattice Ising Ferromagnets

    Full text link
    In the high dimension (mean field) limit the susceptibility and the second moment correlation length of the Ising ferromagnet depend on temperature as chi(T)=tau^{-1} and xi(T)=T^{-1/2}tau^{-1/2} exactly over the entire temperature range above the critical temperature T_c, with the scaling variable tau=(T-T_c)/T. For finite dimension ferromagnets temperature dependent effective exponents can be defined over all T using the same expressions. For the canonical two dimensional square lattice Ising ferromagnet it is shown that compact "extended scaling" expressions analogous to the high dimensional limit forms give accurate approximations to the true temperature dependencies, again over the entire temperature range from T_c to infinity. Within this approach there is no cross-over temperature in finite dimensions above which mean-field-like behavior sets in.Comment: 6 pages, 6 figure

    General scalar products in the arbitrary six-vertex model

    Full text link
    In this work we use the algebraic Bethe ansatz to derive the general scalar product in the six-vertex model for generic Boltzmann weights. We performed this calculation using only the unitarity property, the Yang-Baxter algebra and the Yang-Baxter equation. We have derived a recurrence relation for the scalar product. The solution of this relation was written in terms of the domain wall partition functions. By its turn, these partition functions were also obtained for generic Boltzmann weights, which provided us with an explicit expression for the general scalar product.Comment: 24 page

    Critical and Multicritical Semi-Random (1+d)-Dimensional Lattices and Hard Objects in d Dimensions

    Full text link
    We investigate models of (1+d)-D Lorentzian semi-random lattices with one random (space-like) direction and d regular (time-like) ones. We prove a general inversion formula expressing the partition function of these models as the inverse of that of hard objects in d dimensions. This allows for an exact solution of a variety of new models including critical and multicritical generalized (1+1)-D Lorentzian surfaces, with fractal dimensions dF=k+1d_F=k+1, k=1,2,3,..., as well as a new model of (1+2)-D critical tetrahedral complexes, with fractal dimension dF=12/5d_F=12/5. Critical exponents and universal scaling functions follow from this solution. We finally establish a general connection between (1+d)-D Lorentzian lattices and directed-site lattice animals in (1+d) dimensions.Comment: 44 pages, 15 figures, tex, harvmac, epsf, references adde

    Bethe Equations "on the Wrong Side of Equator"

    Get PDF
    We analyse the famous Baxter's TQT-Q equations for XXXXXX (XXZXXZ) spin chain and show that apart from its usual polynomial (trigonometric) solution, which provides the solution of Bethe-Ansatz equations, there exists also the second solution which should corresponds to Bethe-Ansatz beyond N/2N/2. This second solution of Baxter's equation plays essential role and together with the first one gives rise to all fusion relations.Comment: 13 pages, original paper was spoiled during transmissio

    Finite temperature results on the 2d Ising model with mixed perturbation

    Full text link
    A numerical study of finite temperature features of thermodynamical observables is performed for the lattice 2d Ising model. Our results support the conjecture that the Finite Size Scaling analysis employed in the study of integrable perturbation of Conformal Field Theory is still valid in the present case, where a non-integrable perturbation is considered.Comment: 9 pages, Latex, added references and improved introductio

    A possible combinatorial point for XYZ-spin chain

    Full text link
    We formulate and discuss a number of conjectures on the ground state vectors of the XYZ-spin chains of odd length with periodic boundary conditions and a special choice of the Hamiltonian parameters. In particular, arguments for the validity of a sum rule for the components, which describes in a sense the degree of antiferromagneticity of the chain, are given.Comment: AMSLaTeX, 15 page

    Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions

    Full text link
    We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colorability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colorless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicolored random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolorable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps
    corecore