14,254 research outputs found

    Complementarity and Phase Distributions for Angular Momentum Systems

    Get PDF
    Interferences in the distributions of complementary variables for angular momentum - two level systems are discussed. A quantum phase distribution is introduced for angular momentum. Explicit results for the phase distributions and the number distributions for atomic coherent states, squeezed states and superpositions of coherent states are given. These results clearly demonstrate the issue of complementarity and provide us with results analogous to those for the radiation field.Comment: 9 pages, 3 figures available on request, replaced with minor typos corrected in abstract, to appear in Physics Letters

    Magneto-optical rotation of spectrally impure fields and its nonlinear dependence on optical density

    Get PDF
    We calculate magneto-optical rptation of spectrally impure fileds in an optically thick cold atmic medium. We show that the spectral impurity leads to non-linear dependence of the rotation angle on optical density. Using our calculations, we provide a quanttative analysis of the recent experimental results of G. Labeyrie et al. [Phys. Rev. A 64, 033402 (2001)] using cold Rb85^{85} atoms.Comment: 6 pages, 5 Figures, ReVTeX4, Submitted to PR

    Mesoscopic Superposition of States with Sub-Planck Structures in Phase Space

    Get PDF
    We propose a method using the dispersive interaction between atoms and a high quality cavity to realize the mesoscopic superposition of coherent states which would exhibit sub-Planck structures in phase space. In particular we focus on a superposition involving four coherent states. We show interesting interferences in the conditional measurements involving two atoms.Comment: 4-page 3-figur

    Vacuum induced Stark shifts for quantum logic using a collective system in a high quality dispersive cavity

    Get PDF
    A collective system of atoms in a high quality cavity can be described by a nonlinear interaction which arises due to the Lamb shift of the energy levels due to the cavity vacuum [Agarwal et al., Phys. Rev. A 56, 2249 (1997)]. We show how this collective interaction can be used to perform quantum logic. In particular we produce schemes to realize CNOT gates not only for two-qubit but also for three-qubit systems. We also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as trapped ions or magnetic molecules

    Origin of spatial organization of DNA-polymer in bacterial chromosomes

    Full text link
    In-vivo DNA organization at large length scales (100nm\sim 100nm) is highly debated and polymer models have proved useful to understand the principle of DNA-organization. Here, we show that <2<2% cross-links at specific points in a ring polymer can lead to a distinct spatial organization of the polymer. The specific pairs of cross-linked monomers were extracted from contact maps of bacterial DNA. We are able to predict the structure of 2 DNAs using Monte Carlo simulations of the bead-spring polymer with cross-links at these special positions. Simulations with cross-links at random positions along the chain show that the organization of the polymer is different in nature from the previous case.Comment: arXiv admin note: text overlap with arXiv:1701.0506
    corecore