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Vacuum-induced Stark shifts for quantum logic using a collective system in a high-quality
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A collective system of atoms in a high-quality cavity can be described by a nonlinear interaction which
arises due to the Lamb shift of the energy levels due to the cavity vatAgarwal et al, Phys. Rev. A56,
2249(1997]. We show how this collective interaction can be used to perform quantum logic. In particular we
produce schemes to realize controledf gates not only for two-qubit but also for three-qubit systems. We
also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as
trapped ions or magnetic molecules.
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[. INTRODUCTION three atoms. The two-qubit gate thus obtained consists solely
of the collective three-atom interaction and single-qubit ro-
The possibility of doing quantum computation with neu- tations. In particular, we do not use any techniques involving
tral atoms is becoming more realistic with the advances irbther auxiliary states to select pairs of atoms to interact, as it
techniques relating to the trapping of few atoms which coulds common in the literature of cavity QED quantum comput-
even be addressed individually—3]. However, a number of ing [20-27. Although this reduces the number of sources of
experiments so far have been done with flying qup#ts6]  decoherence, it renders the calculations for implementing
and a number of proposals exist on implementing quantuniniversal gate sets more involved. It is more difficult since
logic operations using cavity QE[Y—11]. We note that the now we are constructing simpler gates such as aket
realization of a controlledioT gate between two qubits re- from the more complex three-qubit gates and single-qubit
quires some form of interaction between the qubits. Thergperations. We note that the major source of decoherence,
are thus realizations which depend on the interaction bethe finite lifetime of cavity photons, is eliminated in this
tween the center-of-mass degrees and the electronic degregsproximation because of the dispersive nature of the atom-
of freedom as in the case of ion42-14, the interaction cavity interaction, and a finite loss raieonly reduces the
between the photonic qubit and the atom as in case of cavitytrength of the collective interaction.
QED [4]. Thus for doing logic operations with neutral atoms  The outline of this paper is as follows. We shall introduce
one would require an effective interaction between themour system and qubits in Sec. Il, present a brief summary of
Note that we have to keep the distance between atoms sugdme key mathematical tools used during our calculations in
that selective addressing is possible for singe-qubit operasec. IIl, then in Secs. IV and V we shall give specific con-
tions. On the other hand, if the atoms are far apart, then thetructions of controlledkoT gates forN=2 andN=3 atoms,
electrostatic interaction between them is very weak. Thesgespectively. We discuss realizations of Toffoli gates in Sec.

problems can be overcome by using a high-quality dispersivg/|, and Sec. VIl is dedicated to our conclusions.
cavity. It has been shown earlier that the interaction of

trapped atoms with a single mode of the radiation field pro-
duces an effective interaction which can be utilized for doing
guantum logid15,16. Though we shall work in the frame- We considemN two-level atoms trapped in a cavity, with
work of this physical system, it is notable that the consideredhe atomic transition frequenay, detuned from the cavity
Hamiltonian is a special case of the Lipkin modi&V], and  resonance frequency by some valued, and denote the
similar Hamiltonians can be associated with the dynamics oflipole coupling between an atom and the cavitydayThe
ion traps[18] and Fé* ions of a large magnetic molecule main source of decoherence in cavity systems is generally
[19]. the relatively high loss rate of photons from the cavity. We
In this paper we propose a technique to realize quanturimtroduce the parametet to characterize this decay rate.
computation using cavity QED based on a collective interacAnother significant source of decoherence is the spontaneous
tion between all qubits, and single-qubit rotations. We derivedecay of the excited state to the ground state. Considering
explicit results for systems of two and three atoms, and prothe number of many ways to work around this probleny.,
vide direct constructions of important quantum gates for bothderiving effective two-level atoms from A-type systen
configurations. Our results imply that arbitrary quantumwe do not discuss this topic in the present paper, and the
gates could be realized for the two and three qubit systemsnain result remains the demonstration of quantum comput-
In the latter case it is demonstrated by first deriving a uni-ding in a dispersive cavity. We note, however, that for large
versal two-qubit gate from the collective interaction of the enough detuning\, the modification of the decay rate due to
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the Purcell effect becomes negligible; therefore spontaneoluR[—#7(2n+1)t], respectively, to every qubit. It is important

decay is not enhanced by the cavity. As the last assumptionhat the angle of rotation depends on the actual mean photon

to facilitate individual addressing of atoms we require thatnumber (i.e., temperatuneof the cavity, hence it must be

the atoms are well separated, i.e., their spatial wave functionanown accurately. It also depends on the tinfier which Hy

are nonoverlapping. is to be applied; however, as we shall see later, in the course
It was shown in Ref{15] that if the cavity is in a thermal of quantum logic gate operations thigs known a priori.

state with mean photon numbey tracing out for this cavity ~Also, because of these commutation properties this rotation

mode in the Ilmltg\N<||A+K\ results in a time evolution of can be carried out any time within the time window pre-

the atoms that can well be approximated by a unitary proscribed byt. Hence in this paper when we say that we work

cess. To write the effective Hamiltonian corresponding towith Hamiltonians(2) without the linear terms, we assume

this evolution in a convenient form we introduce the follow- that the linear terms are always compensated by appropriate

ing notations: Let the computational basis std@@sand|1),  single-qubit rotations.

be defined as the grourify)) and excited(|e)) states of the

kth atom, respectively. Therefore we assign a qubit to each of lll. ENGINEERING TWO-QUBIT GATES

the N atoms trapped within the cavity. Then we take the ) ] )
collective spinN/2 operators For construction of desired two-qubit gates we have used

a technique introduced in Ref31]. For conciseness we
E (0 ) briefly summarize this techn?que. _ _
2k . We consider two two-qubit gatéd andL, with unit de-
terminants. We term them equivalent if they can be trans-
with theo Paulii operators(i=x,y,z or +,-) defined on formed into each other using only single-qubit operations
the computatlonal basis as usual. Now we may write th€©=0,;®0, andO’'=0;® 0O, as
effective Hamiltonian forN atoms with the collective spin

operatorsS and the total angular momentum square operator L=0'MO. (4)
& as Here we used the tensorial product notatiorio distinguish
Hy=A7(S.S.+2nS) (2a) operators acting on different subsystems. A very important

result of Ref.[31] is that this equivalence is perfectly char-

hfS - L+ (2T DS, (2b) acterized by two numbers: L&lg=Q™™Q (Lg=Q'LQ) with
where the coupling factor i3)=g?A/(x?>+A?). We remark 10 0 i
that since this system contains only the atoms, and the time _1fo0i 1 0
evolution is Hamiltonian, the cavity losses are expected to Q= 3 oi -1 0| (5)
play no role in decoherence. The decay through the factor 10 0 -
9%/ (k*+A?) would be rather small as we work in the limit
A> k. Indeed the cavity lifetime typically affects the system a unitary rotation to a specific entangled basis related to the
only through the magnitude of the coupling factar standard Bell states. Then definingeMgMg (I=L{Lg) with

The main theme of this paper shall be to prove the unithe superscript T denoting real transpose, the pairs
versality of this interaction Hamiltonian. To this end we (Tr?m, Trm?) and(Tr3,Trl?) coincide if and only ifL and
show that this way it is possible to generate all controlled-M are equivalent according to EG).
NOT gates using only this interaction and single-qubit opera- A useful application of this definition is to use the matri-
tions. To simplify our calculations we assume that the singlecesm and | to find the single-qubit operation® and O’
qubit operations can be carried out on a more shorter timgonnecting two equivaleM andL. The recipe is as follows:
scale than the period of the collective interaction. Thereforejiagonalizem (1), i.e., findOy (O,) such thatm=0/, 11O

we regard single-qubit operations as instantaneous compar@d:onLoL) with dy (d,) a diagonal matrix. Then the solu-
to the multiqubit operation generated by the collectivetion can be written as

Hamiltonian. The single-qubit rotations also serve as tools to

control the interaction times required for a desired multi- O=OMOT, (6a)
qubit gate based on similar principles as in standard NMR
quantum computin¢28—30. 0’ =0[0"M{. (6b)

Further simplification is applicable to the Hamiltonians
(2) also. We shall drop terms linear & as these terms do Generalization to nonunit determinant matrices glves

not have any effect on the universality Bif because these [Tr’nv16deM, (Tr2m— Tr m)/4detM] )
correspond to single-qubit operations. More precisely, let '
. as invariants ofM (the constant factors are introduced for
xy 9) = EXp= 190y /2) G Jater conveniende (
denote standard SP) rotations. Since&, commutes with the These results summarized by E¢®. can be used to con-

rest of the Hamiltonian, it follows that the linear terms in structL usingM only if L andM are equivalent. This is the
Hamiltonians (2a8) and (2b) may be effectively cancelled similar problem as constructing controlledT gates from
from the time evolution by applyingR(-2znt) and controlledZ gates. There is, however, a more interesting
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problem of constructing ab usingA'’s of a different equiva-
lence clasge.g., SWAP gate usingNOTs). The invariants

(7) can be used to tackle this problem also. Using invariants,
we can split the problem into two, first searching for a matrix

M equivalent to our targét in the form of M=AO:A, and
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FIG. 1. Quantum circuit diagram depicting
the sequence to prepare controlleor gate from
the time-evolution operator in E¢).

0. = [Ry(~ m2)R,(3ml4)] ® [R(ml2)R(ml4)], (13)

O, = [RAm4)R,(~ 7/2)] ® R/(5/4). (14)

The phase factor is in principle irrelevant and is written there

then using Eq.(6) to obtainL. This way we separate the for didactic reasons only. The construction is depicted as a
nonlinear and the linear part of the problem, therefore gaingquantum circuit diagram in Fig. 1. We note here that assum-
ing significant simplification over the conventional way of ing two-qubit gatesU® with equalt, this construction is

searching for a direct solution to.

optimal in terms of operation time for the complete

Unfortunately the invariants do not tell us much about thecontrolledNOT gate.

universality of a two-qubit gaté and it is not known how
many applications ofA are needed to reach a givén For
example a controlledtoT gate(or any equivalentmay never

V. CASE OF N=3 ATOMS

be constructed from SWAP gates and single-qubit operations. !N contrast to theN=2 atoms case when collective inter-
Although throughout our calculations we could solve such@ction is a pair interaction itself, now the collective nature of
problems with two applications of, there may be cases the interaction is more pronounced as it involves all three

when A has to be used more than twice, e.dM
=AGACA.

IV. CASE OF N=2 ATOMS

As the simplest case we consider two atoms in the cavity.

qubits simultaneously. Since the invariant method of Sec. IlI

has not been generalized to three-qubit gates yet, we first
derive a two-qubit gate using single qubit operations, i.e., a
gate which can be written as

The collective spin operators now describe a spin-1 SySteMyarefore we can again use the invariants in the subsequent

and a number of simplifications apply to this case. For ex
ample, the Dicke states32,33 span the complete Hilbert

space of the two atoms a&[S*-(S2-S,)]/2 is a projector
operator. Considering Eq2a) without the linear terms we
haveH,=2%7G, and the time-evolution operator is

UP(t) = e MMHt = 1 —e72iG sin(qt). (8
In the computational basis this corresponds to the matrix
el 0 0 0
_ 0 cos —-isin 0
U =¥ Y D
0 =-ising <cose O
0 0 0o €
with ¢=xt. The invariantg7) of this matrix are
[code,4 code - 1], (10)

while for a controlledNoT gate we would requir€0, 1]. We
see that this requirement is not met by any keakfter some
algebra, however, we obtain that witlf,L:UQ)[(w/ 474,
the sequence

u@=u2,0,0%9,, (11)
is equivalent to a controlledoT gate ifOi=R/(7/4) ®1. In
particular, using this controlledoT equivalent gateJ® a

CNoOT with first bit as control and second as target bit can b, ant The solutions for=-1 andi=

produced as
Uenor=€™40,UP0,, (12)

the single-qubit operations of this formula being

‘calculations involvingU,,. This approach seems more effi-

cient than trying to directly construct a collective quantum

gate such as the Toffoli or Fredkin gate for three atoms.
For the calculations in this section we consittrof Eq.

(2b) without the linear terms. To begin we use this interac-

tion to generate two-qubit quantum gates of the fdff).

Following the scheme similar to the spin-echo technique, we

search for operators fulfilling Eq15) in the form

US(t) = XU t)x,ud(t"). (16)

HereU®)(t)=exd —(i/A)tH,] is the time evolution generated
by the chosen Hamiltonian, arXi=R,(m)® 1 ® 1, which is
essentially aNOT gate. We pose the conditiail5) on Eq.
(16) to find the appropriaté andt’.

The time evolution operatot®(t) is diagonal in the
Dicke-state basis. To develop further insight into the prob-
lem, we apply the theory of angular momentum addition, and
separate our spin-3/2 system into a product of a spin-1/2
and a spin-1 subsystem. The elements in the transformation
matrix to the product basis are given by the relevant
Clebsch-Gordan coefficients.

We require that Eq(16) act on the spin-1/2 subsystem as
the identity. This condition translates tda’=t and
sin(3/2xt)=0, giving three distinct solutions fdy,; for each
i=-1, 0, 1 viant=2/3m(3k+i)(k € Z). Out of these threg,
=0 corresponds to the identity operator and is therefore irrel-
1 are adjoint of one
another, also they are equivalent in the sense of(Eqas
they both have invariantgl/4,3/2. In the following we
work out the controlleddoT gate explicitly fori=1, because
we may expect shorter gate operation times.
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Our two-qubit unitary is represented by

e—iﬂ'/3 0 0 0
2
0 €™ 0 0
Uzs= 0 0o & o (17) FIG. 2. Quantum circuit diagram for the simplified Toffoli gate

0 0 0 iml3 requiring only three controlledoT gates[34] [A=R(7/4)].
e l

in the computational basis. We note that Efj7) may be  whereas requiring only half the controlleshT gates. In cer-
written as exp-iw/30,8 0,) resembling the Heisenberg tain quantum circuits some Toffoli gates may be replaced by
spin-spin interaction that has found many applications irthe simplified versions without altering the effect of the over-
guantum information processing, most notably NMR quan-all circuit.
tum computing[28—30. However, in this case the interac-  Since the decomposition of both these important gates
tion time is fixed by the conditions onandt’ of Eq. (16).  into CNOT's is known, we can use our previous expressions
Nevertheless, we show that it is possible to expres®f CNOT, and substitute them into the quantum circuits.
controlledNOT gates using this operator and single-qubitSimple arithmetic counting the number of applications of
gates. U®(27/3%71) operations gives the gate times for the Toffoli
Having a well-defined two-qubit gate in hand we turn toand its simplified version. These operation times add up to
the technique of Sec. Ill. After straightforward algebra wel6x/% and 8/ 5 for the Toffoli and the simplified Toffoli
find that using the single-qubit operators acting on the subgates, respectively. Following DiVincenzo’s critef&b], for
space of qubits 2 and 3, efficient error-free quantum computation these gate times
should be much shorter than the coherence time of the com-

Or=l @ Ry(er), (18)  plete system.
O.= Rx(_ m2) ® [Rz(W)Rx(QDc)]r (19 VIl. CONCLUSIONS
O, =[RS~ m2)R/(~ m)] ® [Re)R/(~ m2)R(7/2)], _ In this paper we have shovyn the_computationgl universal-
(20) ity up to three qubits of a cavity assisted interaction between
two-level atoms trapped in a dispersive cavity. We have pro-
with posed to use this collective interaction and single-qubit op-
— erations to implement two and three-qubit gates directly,
tan(eg/2) = 12, (21)  rather than by selectively switching “on” and “off” the inter-
o action between pairs of atoms. Therefore we do not require
tan(e/2) = \2/3 -1, (22 any additional levels, and this gives a greater flexibility for
future generalization. In addition to the collective interaction
Yoy — (1 _ Jav/> we only need single-qubit operations to implement multiqu-
tanee/2) = (1 = V32, 23 bit gates. This requires that the atoms are separately addres-
the controlledNOT gate can be constructed as sable, and we also assume that single-atom operations can be
CimA performed on much shorter time scales than the collective
Ucenor= € " 0cU2801U:0c. (24) interaction. The formalism used is not specific to two or

and target bits, respectively. However, due to the symmetrgations to more qubits. _ _

of Hs, a controlledNoT gate acting the other way around or N comparison with most previous proposals, since we do
connecting different qubits is achievable simply by exchanghot excite the cavity during gate operations our scheme is
ing the roles of qubits appropriately with respect to ourfobust against cavity decay. Also, dealing with thermal cavity

single-qubit operations. states is made very straightforward within this theoretical
framework. We believe therefore that this scheme may find
VI. TOFEOL| GATES useful applications in situations where good localization of

atoms had been achieved inside a cavity.
Universality of controlledvoT gates implies that having
them in all configurations for three qubits allows the con-
struction of any three-qubit quantum gate, i.e., any(ZY
operator. In this section we demonstrate that it is possible to This work was partly supported by the National Research
construct collective gates for all three qubits using our col-Fund of Hungary under Contract Nos. T 034484 and T
lective interaction. As a practical example we consider ar043079; the Marie Curie Programme of the European Com-
important building block for systematic construction of com- mission; and by the Hungarian Ministry of Education under
plex quantum circuits, the Toffoli ga{@4]. We also discuss Contract No. CZ-5/03. A.G. would also like to thank the
a simplified version of the Toffoli gatéFig. 2) that differs  Director of P.R.L., Ahmedabad for his warm welcome and
from the Toffoli gate only in one conditional phase shift for all his support, and J. Janszky for useful discussions.
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