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A collective system of atoms in a high-quality cavity can be described by a nonlinear interaction which
arises due to the Lamb shift of the energy levels due to the cavity vacuumfAgarwal et al., Phys. Rev. A56,
2249s1997dg. We show how this collective interaction can be used to perform quantum logic. In particular we
produce schemes to realize controlled-NOT gates not only for two-qubit but also for three-qubit systems. We
also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as
trapped ions or magnetic molecules.
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I. INTRODUCTION

The possibility of doing quantum computation with neu-
tral atoms is becoming more realistic with the advances in
techniques relating to the trapping of few atoms which could
even be addressed individuallyf1–3g. However, a number of
experiments so far have been done with flying qubitsf4–6g
and a number of proposals exist on implementing quantum
logic operations using cavity QEDf7–11g. We note that the
realization of a controlled-NOT gate between two qubits re-
quires some form of interaction between the qubits. There
are thus realizations which depend on the interaction be-
tween the center-of-mass degrees and the electronic degrees
of freedom as in the case of ionsf12–14g, the interaction
between the photonic qubit and the atom as in case of cavity
QED f4g. Thus for doing logic operations with neutral atoms
one would require an effective interaction between them.
Note that we have to keep the distance between atoms such
that selective addressing is possible for singe-qubit opera-
tions. On the other hand, if the atoms are far apart, then the
electrostatic interaction between them is very weak. These
problems can be overcome by using a high-quality dispersive
cavity. It has been shown earlier that the interaction of
trapped atoms with a single mode of the radiation field pro-
duces an effective interaction which can be utilized for doing
quantum logicf15,16g. Though we shall work in the frame-
work of this physical system, it is notable that the considered
Hamiltonian is a special case of the Lipkin modelf17g, and
similar Hamiltonians can be associated with the dynamics of
ion trapsf18g and Fe3+ ions of a large magnetic molecule
f19g.

In this paper we propose a technique to realize quantum
computation using cavity QED based on a collective interac-
tion between all qubits, and single-qubit rotations. We derive
explicit results for systems of two and three atoms, and pro-
vide direct constructions of important quantum gates for both
configurations. Our results imply that arbitrary quantum
gates could be realized for the two and three qubit systems.
In the latter case it is demonstrated by first deriving a uni-
versal two-qubit gate from the collective interaction of the

three atoms. The two-qubit gate thus obtained consists solely
of the collective three-atom interaction and single-qubit ro-
tations. In particular, we do not use any techniques involving
other auxiliary states to select pairs of atoms to interact, as it
is common in the literature of cavity QED quantum comput-
ing f20–27g. Although this reduces the number of sources of
decoherence, it renders the calculations for implementing
universal gate sets more involved. It is more difficult since
now we are constructing simpler gates such as theCNOT

from the more complex three-qubit gates and single-qubit
operations. We note that the major source of decoherence,
the finite lifetime of cavity photons, is eliminated in this
approximation because of the dispersive nature of the atom-
cavity interaction, and a finite loss ratek only reduces the
strength of the collective interaction.

The outline of this paper is as follows. We shall introduce
our system and qubits in Sec. II, present a brief summary of
some key mathematical tools used during our calculations in
Sec. III, then in Secs. IV and V we shall give specific con-
structions of controlled-NOT gates forN=2 andN=3 atoms,
respectively. We discuss realizations of Toffoli gates in Sec.
VI, and Sec. VII is dedicated to our conclusions.

II. PHYSICAL SYSTEM

We considerN two-level atoms trapped in a cavity, with
the atomic transition frequencyv0 detuned from the cavity
resonance frequencyv by some valueD, and denote the
dipole coupling between an atom and the cavity byg. The
main source of decoherence in cavity systems is generally
the relatively high loss rate of photons from the cavity. We
introduce the parameterk to characterize this decay rate.
Another significant source of decoherence is the spontaneous
decay of the excited state to the ground state. Considering
the number of many ways to work around this problemse.g.,
deriving effective two-level atoms from aL-type systemd,
we do not discuss this topic in the present paper, and the
main result remains the demonstration of quantum comput-
ing in a dispersive cavity. We note, however, that for large
enough detuningD, the modification of the decay rate due to
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the Purcell effect becomes negligible; therefore spontaneous
decay is not enhanced by the cavity. As the last assumption,
to facilitate individual addressing of atoms we require that
the atoms are well separated, i.e., their spatial wave functions
are nonoverlapping.

It was shown in Ref.f15g that if the cavity is in a thermal
state with mean photon numbern̄, tracing out for this cavity
mode in the limitgÎN! uiD+ku results in a time evolution of
the atoms that can well be approximated by a unitary pro-
cess. To write the effective Hamiltonian corresponding to
this evolution in a convenient form we introduce the follow-
ing notations: Let the computational basis statesu0lk andu1lk
be defined as the groundsugld and excitedsueld states of the
kth atom, respectively. Therefore we assign a qubit to each of
the N atoms trapped within the cavity. Then we take the
collective spin-N/2 operators

Si =
1

2o
k=1

N

si
skd, s1d

with the si
skd Pauli-i operatorssi =x,y,z or +,−d defined on

the computational basis as usual. Now we may write the
effective Hamiltonian forN atoms with the collective spin
operatorsSi and the total angular momentum square operator
S2 as

HN = "hsS+S− + 2n̄Szd s2ad

="hfS2 − Sz
2 + s2n̄ + 1dSzg, s2bd

where the coupling factor ish=g2D / sk2+D2d. We remark
that since this system contains only the atoms, and the time
evolution is Hamiltonian, the cavity losses are expected to
play no role in decoherence. The decay through the factor
g2k / sk2+D2d would be rather small as we work in the limit
D@k. Indeed the cavity lifetime typically affects the system
only through the magnitude of the coupling factorh.

The main theme of this paper shall be to prove the uni-
versality of this interaction Hamiltonian. To this end we
show that this way it is possible to generate all controlled-
NOT gates using only this interaction and single-qubit opera-
tions. To simplify our calculations we assume that the single-
qubit operations can be carried out on a more shorter time
scale than the period of the collective interaction. Therefore
we regard single-qubit operations as instantaneous compared
to the multiqubit operation generated by the collective
Hamiltonian. The single-qubit rotations also serve as tools to
control the interaction times required for a desired multi-
qubit gate based on similar principles as in standard NMR
quantum computingf28–30g.

Further simplification is applicable to the Hamiltonians
s2d also. We shall drop terms linear inSz as these terms do
not have any effect on the universality ofH because these
correspond to single-qubit operations. More precisely, let

Rx,y,zsqd = exps− iqsx,y,z/2d s3d

denote standard SUs2d rotations. SinceSz commutes with the
rest of the Hamiltonian, it follows that the linear terms in
Hamiltonians s2ad and s2bd may be effectively cancelled
from the time evolution by applyingRzs−2hn̄td and

Rzf−hs2n̄+1dtg, respectively, to every qubit. It is important
that the angle of rotation depends on the actual mean photon
number si.e., temperatured of the cavity, hence it must be
known accurately. It also depends on the timet for which HN
is to be applied; however, as we shall see later, in the course
of quantum logic gate operations thist is known a priori.
Also, because of these commutation properties this rotation
can be carried out any time within the time window pre-
scribed byt. Hence in this paper when we say that we work
with Hamiltonianss2d without the linear terms, we assume
that the linear terms are always compensated by appropriate
single-qubit rotations.

III. ENGINEERING TWO-QUBIT GATES

For construction of desired two-qubit gates we have used
a technique introduced in Ref.f31g. For conciseness we
briefly summarize this technique.

We consider two two-qubit gatesM andL, with unit de-
terminants. We term them equivalent if they can be trans-
formed into each other using only single-qubit operations
O=O1 ^ O2 andO8=O18 ^ O28 as

L = O8MO. s4d

Here we used the tensorial product notation^ to distinguish
operators acting on different subsystems. A very important
result of Ref.f31g is that this equivalence is perfectly char-
acterized by two numbers: LetMB=Q†MQ sLB=Q†LQd with

Q =
1
Î21

1 0 0 i

0 i 1 0

0 i − 1 0

1 0 0 − i
2 , s5d

a unitary rotation to a specific entangled basis related to the
standard Bell states. Then definingm=MB

TMB sl =LB
TLBd with

the superscript T denoting real transpose, the pairs
sTr2m,Tr m2d and sTr2l ,Tr l2d coincide if and only ifL and
M are equivalent according to Eq.s4d.

A useful application of this definition is to use the matri-
ces m and l to find the single-qubit operationsO and O8
connecting two equivalentM andL. The recipe is as follows:
diagonalizem sld, i.e., findOM sOLd such thatm=OM

T dMOM

sl =OL
TdLOLd with dM sdLd a diagonal matrix. Then the solu-

tion can be written as

O = OMOL
T, s6ad

O8 = OL
TOTMB

† . s6bd

Generalization to nonunit determinant matrices gives

fTr2m/16detM,sTr2m− Tr m2d/4detMg s7d

as invariants ofM sthe constant factors are introduced for
later convenienced.

These results summarized by Eqs.s6d can be used to con-
structL usingM only if L andM are equivalent. This is the
similar problem as constructing controlled-NOT gates from
controlled-Z gates. There is, however, a more interesting
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problem of constructing anL usingA’s of a different equiva-
lence classse.g., SWAP gate usingCNOT’sd. The invariants
s7d can be used to tackle this problem also. Using invariants,
we can split the problem into two, first searching for a matrix
M equivalent to our targetL in the form of M =AOfA, and
then using Eq.s6d to obtain L. This way we separate the
nonlinear and the linear part of the problem, therefore gain-
ing significant simplification over the conventional way of
searching for a direct solution toL.

Unfortunately the invariants do not tell us much about the
universality of a two-qubit gateA and it is not known how
many applications ofA are needed to reach a givenL. For
example a controlled-NOT gatesor any equivalentd may never
be constructed from SWAP gates and single-qubit operations.
Although throughout our calculations we could solve such
problems with two applications ofA, there may be cases
when A has to be used more than twice, e.g.,M
=AOfAOf8A.

IV. CASE OF N=2 ATOMS

As the simplest case we consider two atoms in the cavity.
The collective spin operators now describe a spin-1 system,
and a number of simplifications apply to this case. For ex-
ample, the Dicke statesf32,33g span the complete Hilbert
space of the two atoms andG=fS2−sSz

2−Szdg /2 is a projector
operator. Considering Eq.s2ad without the linear terms we
haveH2=2"hG, and the time-evolution operator is

Us2dstd = e−si/"dH2t = 1 −e−iht2iG sinshtd. s8d

In the computational basis this corresponds to the matrix

Us2dstd = es−iwd1
e−iw 0 0 0

0 cosw − i sinw 0

0 − i sinw cosw 0

0 0 0 eiw
2 , s9d

with w=ht. The invariantss7d of this matrix are

fcos4w,4 cos2w − 1g, s10d

while for a controlled-NOT gate we would requiref0, 1g. We
see that this requirement is not met by any realw. After some
algebra, however, we obtain that withUp/4

s2d =Us2dfsp /4dh−1g,
the sequence

Ũs2d = Up/4
s2d OfUp/4

s2d , s11d

is equivalent to a controlled-NOT gate if Of =Rysp /4d ^ 1. In

particular, using this controlled-NOT equivalent gateŨs2d a
CNOT with first bit as control and second as target bit can be
produced as

UCNOT = eip/4Oc8Ũ
s2dOc, s12d

the single-qubit operations of this formula being

Oc8 = fRxs− p/2dRzs3p/4dg ^ fRxsp/2dRzsp/4dg, s13d

Oc = fRzsp/4dRys− p/2dg ^ Rzs5p/4d. s14d

The phase factor is in principle irrelevant and is written there
for didactic reasons only. The construction is depicted as a
quantum circuit diagram in Fig. 1. We note here that assum-
ing two-qubit gatesUs2d with equal t, this construction is
optimal in terms of operation time for the complete
controlled-NOT gate.

V. CASE OF N=3 ATOMS

In contrast to theN=2 atoms case when collective inter-
action is a pair interaction itself, now the collective nature of
the interaction is more pronounced as it involves all three
qubits simultaneously. Since the invariant method of Sec. III
has not been generalized to three-qubit gates yet, we first
derive a two-qubit gate using single qubit operations, i.e., a
gate which can be written as

U23
s3d = 1 ^ U23. s15d

Therefore we can again use the invariants in the subsequent
calculations involvingU23. This approach seems more effi-
cient than trying to directly construct a collective quantum
gate such as the Toffoli or Fredkin gate for three atoms.

For the calculations in this section we considerH3 of Eq.
s2bd without the linear terms. To begin we use this interac-
tion to generate two-qubit quantum gates of the forms15d.
Following the scheme similar to the spin-echo technique, we
search for operators fulfilling Eq.s15d in the form

U23
s3dstd = X1U

s3dstdX1U
s3dst8d. s16d

HereUs3dstd=expf−si /"dtH3g is the time evolution generated
by the chosen Hamiltonian, andX1=Rxspd ^ 1 ^ 1, which is
essentially aNOT gate. We pose the conditions15d on Eq.
s16d to find the appropriatet and t8.

The time evolution operatorUs3dstd is diagonal in the
Dicke-state basis. To develop further insight into the prob-
lem, we apply the theory of angular momentum addition, and
separate our spin-3/2 system into a product of a spin-1/2
and a spin-1 subsystem. The elements in the transformation
matrix to the product basis are given by the relevant
Clebsch-Gordan coefficients.

We require that Eq.s16d act on the spin-1/2 subsystem as
the identity. This condition translates tot8= t and
sins3/2htd=0, giving three distinct solutions forU23 for each
i =−1, 0, 1 viaht=2/3ps3k+ idskPZd. Out of these three,i
=0 corresponds to the identity operator and is therefore irrel-
evant. The solutions fori =−1 and i =1 are adjoint of one
another, also they are equivalent in the sense of Eq.s4d as
they both have invariantsf1/4,3/2g. In the following we
work out the controlled-NOT gate explicitly fori =1, because
we may expect shorter gate operation times.

FIG. 1. Quantum circuit diagram depicting
the sequence to prepare controlled-NOT gate from
the time-evolution operator in Eq.s9d.
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Our two-qubit unitary is represented by

U23 =1
e−ip/3 0 0 0

0 eip/3 0 0

0 0 eip/3 0

0 0 0 e−ip/3
2 s17d

in the computational basis. We note that Eq.s17d may be
written as exps−ip /3sz^ szd resembling the Heisenberg
spin-spin interaction that has found many applications in
quantum information processing, most notably NMR quan-
tum computingf28–30g. However, in this case the interac-
tion time is fixed by the conditions ont and t8 of Eq. s16d.
Nevertheless, we show that it is possible to express
controlled-NOT gates using this operator and single-qubit
gates.

Having a well-defined two-qubit gate in hand we turn to
the technique of Sec. III. After straightforward algebra we
find that using the single-qubit operators acting on the sub-
space of qubits 2 and 3,

Of = 1 ^ Rysw fd, s18d

Oc = Rxs− p/2d ^ fRzspdRxswcdg, s19d

Oc8 = fRzs− p/2dRys− pdg ^ fRzswc8dRys− p/2dRzsp/2dg,

s20d

with

tansw f/2d = 1/Î2, s21d

tanswc/2d = Î2/3 − 1, s22d

tanswc8/2d = s1 −Î3d/Î2, s23d

the controlled-NOT gate can be constructed as

UCNOT = e−ip/4Oc8U23OfU23Oc. s24d

This controlled-NOT gate acts on qubits 2 and 3 as control
and target bits, respectively. However, due to the symmetry
of H3, a controlled-NOT gate acting the other way around or
connecting different qubits is achievable simply by exchang-
ing the roles of qubits appropriately with respect to our
single-qubit operations.

VI. TOFFOLI GATES

Universality of controlled-NOT gates implies that having
them in all configurations for three qubits allows the con-
struction of any three-qubit quantum gate, i.e., any SUs23d
operator. In this section we demonstrate that it is possible to
construct collective gates for all three qubits using our col-
lective interaction. As a practical example we consider an
important building block for systematic construction of com-
plex quantum circuits, the Toffoli gatef34g. We also discuss
a simplified version of the Toffoli gatesFig. 2d that differs
from the Toffoli gate only in one conditional phase shift

whereas requiring only half the controlled-NOT gates. In cer-
tain quantum circuits some Toffoli gates may be replaced by
the simplified versions without altering the effect of the over-
all circuit.

Since the decomposition of both these important gates
into CNOT’s is known, we can use our previous expressions
of CNOT, and substitute them into the quantum circuits.
Simple arithmetic counting the number of applications of
Us3ds2p /3h−1d operations gives the gate times for the Toffoli
and its simplified version. These operation times add up to
16p /h and 8p /h for the Toffoli and the simplified Toffoli
gates, respectively. Following DiVincenzo’s criteriaf35g, for
efficient error-free quantum computation these gate times
should be much shorter than the coherence time of the com-
plete system.

VII. CONCLUSIONS

In this paper we have shown the computational universal-
ity up to three qubits of a cavity assisted interaction between
two-level atoms trapped in a dispersive cavity. We have pro-
posed to use this collective interaction and single-qubit op-
erations to implement two and three-qubit gates directly,
rather than by selectively switching “on” and “off” the inter-
action between pairs of atoms. Therefore we do not require
any additional levels, and this gives a greater flexibility for
future generalization. In addition to the collective interaction
we only need single-qubit operations to implement multiqu-
bit gates. This requires that the atoms are separately addres-
sable, and we also assume that single-atom operations can be
performed on much shorter time scales than the collective
interaction. The formalism used is not specific to two or
three atom systems and therefore allows for further generali-
zations to more qubits.

In comparison with most previous proposals, since we do
not excite the cavity during gate operations our scheme is
robust against cavity decay. Also, dealing with thermal cavity
states is made very straightforward within this theoretical
framework. We believe therefore that this scheme may find
useful applications in situations where good localization of
atoms had been achieved inside a cavity.
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FIG. 2. Quantum circuit diagram for the simplified Toffoli gate
requiring only three controlled-NOT gatesf34g fA=Rysp /4dg.
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