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Mesoscopic superposition of states with sub-Planck structures in phase space
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We propose the cavity quantum electrodynamics method, using dispersive interaction between atoms and a
high-quality cavity to realize the mesoscopic superposition of coherent states that would exhibit sub-Planck
structures in phase space, i.e., the structures at a scale smaller than the Plank’s (onstaese structures
are direct signatures of quantum coherence and are formed as a result of interference between the two super-
posed cat states. In particular we focus on a superposition involving four coherent states. We show interfer-
ences in the conditional measurements involving two atoms.
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I. INTRODUCTION 1. COMPASS STATE FOR THE RADIATION FIELD

In recent times mesoscopic superposition of states has at- Consider a single-mode radiation field specified by the
tracted a great deal of attention as these superpositions exppinilation and creation operatoasand a'. Let |a) be a
hibit very important interference effedis-3) many of which  coherent state for the field with amplitude The most com-

have now -been realized prerimente{W—S]. The simplest monly studied superpositions are of the form
superposition would consist of two coherent states one cen-

tered atw and the other atea. Such a state is known to be an |y ~ |a) +|€%). (1)
eigenstate of the operat@®. It has been known that the

passage of a single mode of the field in a coherent statderedis an arbitrary phase. Extensive literature on this state
through a Kerr medium could produce such a sfatel1]. In  exists. It is well known[1,2] that the quantum character of

an earlier work[9], it was shown that a variety of other this state is reflected in the regions of phase space where the
superpositions can be produced by a Kerr medium. In parwigner function becomes negative. The area of the negative
ticular, one can produce eigenstates of the opewtoBuch  region is of the order of Planck constant. There are several
eigenstates are superpositions of four coherent states. Howrethods of producing such a stg&7-9. Zurek [18] has

ever, an efficient production of such states would require &tudied a superposition state of four Gaussian wave packets
large Kerr nonlinearity which is not available though some

proposals for the enhancement of the Kerr nonlinearity exist (X—%0)? ipoX
[12]. The existence of such superpositions is closely con- x) ~ exp{— 2 +7}
nected to the occurrence of fractional revivals in the nonlin-
ear dynamics of quantum systeiis13—13. In particular, a  with one each placed in the east, west, north, and south di-
fractional revival of order 1/4 can produce a superposition ofection in the phase space and calculated the Wigner function
four coherent states. However, instead of pursuing the prdfor such a state, defined by

duction using Kerr medium, we propose to use cavity QED
methods. We note that Haroche and co-workg3sh,q
showed how cavity quantum electrodynamics can be used to

produce a superposition of two mesoscopic states. It turns ) . ) ) )
out that one can have a fairly large dispersive interaction irfi€ found that it exhibits negative regions in phase space as

high-quality cavities. This high dispersion has been utilizedVell as structures with areas which could be much smaller
by several authorfl6,17 to produce a variety of entangled than Planck’s constant. Since coherent states correspond to
states and nonclassical superpositions including a superpospaussian wave packets, in the following we consider a su-
tion of four coherent states. In this paper we show how td?€rposition of four coherent states of the form

prepare superpositions of four coherent states by using dis- _ oyt = oy 4 =i

persive interaction in a high-quality cavity. This study is mo- |9y =N(|@) +ia) + |- a) + |- i), (4)
tivated by a recent finding of Zurgi.8] that a proper super- whereN is the normalization constant amdis complex. The

position of four coherent states which he refers to as avigner function for any statip) can be obtained using co-
compass state, can exhibit regions in phase space with suRerent states 349

Planck structures, i.e., the area of the variations of the two

quadratures can be much smaller thanWe demonstrate _2 op 2By )2

how the results of conditional measurements on three atoms (7.7 )= ﬂzezy (- Blo)giBre rdB. (5
passing in succession, through a higheavity, can yield

information on such a compass state. For the statg€4) the Wigner function is found to be

2

W(x,p) = ﬁ f eipy/ﬁ¢<x_ %’)w* <X+ g)dy (3)
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4e2
W(y,y*)=|NJ?

[2e‘2|‘1‘2 cosH(1l+)ay* + (1 -i)a* yicosH(1l —i)ay* + (L +i)a* y}+2 cod(1 +i)ay*
a

+(1-Da* yleod(L-Day* + (L+i)a* y}+elld=@Dar-aDe N cog|af2 = (1 +i)ay* - (1-i)a* 7}
+ e—[\a|2—(l—i)ay*—(l+i)a*'y] Cog|a|2 _ (1 _ i)a,,y* _ (1 + i)a,* ,y} + e—[|a\2+(1+i)a'y*+(l—i)a* v] Cog|a|2 + (1 + i)O(’y*

+(L-i)a* y} + el Ay Ae 9] cod|af2 + (1 -i)ay* + (1 +)a* y}. (6)

Each cosine term in E@6) arises from the interference of a cavity field is|a). Let . be the cavity frequency. Consider
pair of coherent states in the superposition s{@je The the passage of a two level atom with the excited and ground
sub-Plank structures arise from further interference of twastates|e) and |g) with transition frequencyw. The atom is
cosine terms which come from the diagonal pairs. The firsinitially prepared in a superposition state

two terms in Eq(6) are such terms coming from the diago-

nal pairs|a),|-a) and|ia),|-ia). The first term is significant |®) =cde) +c4lg). (7

for smaller values ofa| and shows exponential decrease in . . . "
the Wigner function away from the center and the second” a frame rotating ywth_the_ atomic transition frequensy
term which is significant for larger values pf| shows the € interaction Hamiltonian is given by

interference pattern in the central regiop— 0). In Figs. 1 — 7 st N s— (0 _

and 2, we plot the Wigner function for some typical values of H=7%sa'a+ng(le)gla+|g)ea’), 6= (v~ w). (8)

|a|. We found that for smaller values d&| (Fig. 1), the = We assume that we are working in the dispersive limit so that
central part has a continuum and no other structures appearis large. We can then do a second order perturbation theory
but for larger values ofa| (Fig. 2), a chess board pattern as and obtain an effective Hamiltonian

noticed earlier by Zurek appears in the central region. The N N +

reason for the disappearance of the interference pattern in the H = fhsa'a+ ¢oha'algi(gl - dohiaa’le)e, (9)
central region for smaller values f| is because in this Case \yhere the parametef, is equal tog?/ 8. Physically it gives
the coherent states overlap to a large extent so the interfefre ghift of the excited state in the absence of any cavity

ence effects are not visible. field. Under the effect of the Hamiltonia(®), the states
A natural question is how to produce the state Inwhat o\ glve as

follows we show how the methods of cavity quantum elec- . '
trodynamicq3,5] can be generalized to produce the stdje lg,n) — e N%om N7 ),

[l. GENERATION OF THE COMPASS STATE USING {(1+1) g rin e
DISPERSIVE INTERACTION BETWEEN ATOMS le,n) — € 0 le.n), (10
AND CAVITY where 7 is the interaction time. Using Eq10), we easily

Consider a single-mode higR-cavity containing a small obtain the evolution of a field in a coherent Stai
amount of a coherent field so that the initial state of the
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FIG. 1. (Color onling The Wigner function for mesoscopic su- FIG. 2. (Color onling The Wigner function for mesoscopic su-
perposition statéN(|a)+|-a) +|ia)+|-ia)) for |a|=1. perposition statéN(|a)+|-a)+|ia)+|-ia)) for |a|=5.
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|9,a) — |g, a7,

le,a) — €?e,a€?%7), ¢p= gyt (11)

Therefore the atom field system in the stade, a) will
evolve into

|®,a) — c€?e a7 +cylg, a7 (12)

The probability of detection of the atom in the stdt@
= ele)+ iylg) will be

Py= leahiad ) + o™

(13

2+ |Cyipl* + 2 Re(CthyCotlel X ae™ (7] a€l997)).
(14)

=|Cetle

The last term in Eq(14) yields the interference fringes. For

PHYSICAL REVIEW A 70, 053813(2004)

ag= ae—i(ST—i(ST’ )

Clearly by varyinge¢ and ¢’ we can produce a variety of
superpositions. Consider, for examplé,==/4 and ¢’
=7/2, then

3iml4
1

(oo = Q€ i 71'/4,

aegl = a’oe

—3iml4

ager = Ofoeiwm, Ct’ggr =g (19)

so the statg17) is a compass state. The expansion coeffi-
cients in Eq.(17) depend on the initial preparation of the
atomsA and B and the detection of these atoms. This is
usually done by using two Ramsey zones before and after the
cavity. Let us for simplicity assume that

1 . _
=5 +elg): j=AB,

the special case of the initial state and the detection state
having equal superposition of the ground and the excited e
states|cyyCet/e| =1/4. Thevisibility depends on the scalar [0 =Dp|Pg), (20
product of two coherent states that are shifted in phase b%here|<1>j’> is obtained fr0m|(1)j> by using 7,— 1;]-’ and 6;

2¢. The phase shift is a measure of the cavity interaction._, o Substituting values of; from Eq.(19) we rewrite Eq.
Haroche and co-workers have used the above for the produgy -’ J

as
tion and detection of mesoscopic superposition of the fiel 7

states. In the present case the generated mesoscopic super

sition is the state in Eq13) under the| || sign.

We next demonstrate how the compass state can be pro-

duced by following similar ideas. Let us write the st&i@)
in the form

|CDaa>:fe|e>|ae>+fg|g>|ag>- (15
Let us consider the passage of two atoms labeletl aisd B

?85 - }(ei(nl+772+37-r/4)|_ a> + ei(ﬂ1+02+7r/4)|a> + ei(01+7,2+7r/2)|ia>
4

+e ") -ia)), (21)

M= DA~ T M= Mg~ Mgy 01= Opa— Op, 6= 05— O,

we have also setyy=a€™*. For 6,=n,+w/4 and 6,=17,
+1/2 the statg21) becomes the compass stéde

in succession through the cavity. After the passage of the

atom A we get the statg¢15). Clearly the net state of the

system consisting of two atom&, B and the cavity field
would have the structure

|W) = fehelen, €a)|aee) + fehg|eAvgB>|aeg’> + fghe|gAa eB>|age'>
+ fghg|gA: gB>|agg’>- (16)

The joint detection of the atoms in the stafg)

= Xee |eAveB> * Xey |eA1 Os) * Xge' |gA1 €s) * Xgg' |gAa Os) will
project statg16) to (unnormalized staje

(X|¥) = |C) = fohexow

+ fgthgg/|aggr>.

a’ee’> + fetheg'|a'eg’> + fgheXge’|age’>

(17)

Clearly such a conditional detection reduces the state of the
cavity field to a state which in general would be a mesos-

copic superposition of four coherent sate§). The value of
«@;; can be read from Eq12):

e = @€ T, ey = agd 1Y

Qg = a’oe_i(bﬂ('/)’, Ay = a’oe_hb_i('b’; (18)
2 2
b= 9aA7A & = 987s.
5’ 5’

1.
IC) =2 3T (= ) + |a) + i) + |- i), (22)
It is clear that the probability of joint measurements on the
atomsA and B would be

P=Tr{xlX¥ix), (23

where Tg stands for tracing over the cavity field. Using Egs.
(17) and(20), we find the result

pP= % + % Re(ei(ez—nz—w/2)<_ a|a,> + ei(()l—nl—‘rr/4)<_ a|ia>

+ ei(01+02—7]1—772—3ﬂ'/4)<_ a|_ |0[> + ei(01—77|—77/4)<a|_ |a>
+ @Ot m=0+ T o i o) + (071D o) - | )
=(C[C). (24)

In Fig. 3 we showP as a function of phases of initial atomic
state and the detected atomic state|fdr 1. These interfer-
ences become less prominent for larger valuesatf The
exact nature of interferences depends on the choice of the
phase factorsy, and 6;.

In order to explore the characteristics of the st2®, we
have to bring a third ator® and examine the probability of
its detection in a given state. This would be similar to what
was done in the experiment of Brue¢ al. [5] to study the
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are multiples of four. We discuss in Appendix A the differ-
ences in the excitation probabilities for different states in the
cavity.

Following the work of Davidovichet al. [3] we can ex-
amine the effect of detection efficiency on the preparation of
the compass state. If one atom passes through the cavity
undetected it will leave the cavity either in its excited state
le) or in its ground statég), in both cases it will produce
- il phase shift in all the superposed coherent states equally and
015 ‘ TN as a result it cannot affect the compass state except rotating it

L & 0 B | = in phase space. So in the experimental realization of such
mesoscopic superposition high efficiency detection is not
necessary. We relegate the details to Appendix B. We further
note that more complex homodyne methods like the ones
used in Ref[4] can be employed to probe the phase space
distributions associated with the compass state.

FIG. 3. (Color onling The probabilityP for |«[2=1 is plotted Next we consider effects of decoherence on the compass

with phases of the initial atomic state and the detected state. Thetate(4). This can be done using the master equation
scale along thex axis andy axis is in units ofm.

0.35-

Po2s] .

-2

. K

p=- E(aTap - 2apa’ + pa'a), (25)
cat state(the mesoscopic superposition of two coherent
state$. Another possibility would involve a probe atom in- where « is the cavity field decay parameter and we assume
teracting resonantly with the prepared field in the cavity aghat the cavity is at zero temperature. For the initial stdje
the compass stat@) involves photon number states which we find the density matrix after time

p(t) = N[l a)ay] + |~ a)(~ o] + [ia)(io| + |- ia)(~iay| + e—2|a\2(1—e"<‘)(|at><_ ]+ |= a)ay| + i) (=i ay| + |- iaiay)
+ e_‘alz(l_i)(l_eim)qat><iat| +|—ia)ay + |- a)(—ia] + |ia)(— aff) + gL liag ay] + |a)(- iy

+ =i~ o] + |- a)iay))]; o= a2, (26)

e Kt

The coherence of the superposition decaysg-ggt\z(l-e‘“‘) tribution is very special, it has a number states having a
which is 22« in the limit xt<1. Thus the lifetime of the Photon number in Fhe integral multiple of four. The stedg
compass state will be/2|al?, t. is the lifetime of the cavity ~Can be expressed in terms of the number of states as follows:

field. So the lifetime for the compass state is the same as for o ,
a Schrodinger cat statd). |y =N, ’me—\a\ 2|4p), (A1)
p Vi4p):

IV. CONCLUSIONS

We di d th . f th ¢ wherep is an integer. We propose a simple method for de-
Ve discussed the properties of the compass state for t%cting the compass state using a two level atom interacting
radiation field as well as the methods for generating a com

. ; . A ) ersonantly with the cavity field as a probe. The Hamiltonian
pass state using the dispersive atom cavity interaction. We o itéraction picture is

showed that the central interference pattern in the Wigner
function for mesoscopic superposition of cat states appears H =7%g(|e)(gla+a'|g)g|), (A2)
for larger values ofa| and disappears for smaller values. The
conditional measurements enable one to study some aspe§ere all symbols have their earlier defined meanings. Using
of the mesoscopic superposition of coherent states. We hage above interaction Hamiltonian we can calculate the prob-
also discussed the effects of decoherence on the compaghilities of detection for the atom in its different states after
state as well as the effects of nonunity detection efficiency irpassing through the cavity. The probabilities of detection if
the preparation of the compass state. the atom enters the cavity in its lower stége and detected

in its state|g) and|e), P and Pg, respectively, are

APPENDIX A
2
_ The compass state can be detected using the methods sen- Py = >IN ’,_e‘\“\z’z cog2gt\p)| , (A3)
sitive to its field statistics. For the compass-state photon dis- p V(4p)!
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|CA> - N(ei 7]1+77/4| aei 71'/4> + ei 61|a,e—i'rr/4>), (Bl)

where the velocity of atom is selected such that the phase
change in the cavity fieldpb==/4. If one atom similar to
atom A passes through the cavity undetected, the combined
state will be

|y = N+ T4 (@t T4 o 712) 1 01 o'y)[e)

+Ne(en* ™o’y + &%a’e™?))|g),  (B2)
wherea’ =ae %1, We trace out the atomic state as the atom
FIG. 4. The probability of detection of the atom in its ground passes undetected, the cavity field will be in the state

state|g) for a cavity field in(a) compass stat&b) Schrodinger cat ICh = N'[€ 7/1+7T/4(|a'> +lia')) + g 01(|a’> +|=ia))].
stateNg(|a)+|-a)), and(c) coherent statéw), for |a|?>=16.

(B3)
AP ) — |2 Now the second atonB enters the cavity and is detected
Pg: >IN ,—e‘|“‘ 2 sin(2gtVp)| . (A4) after passing the cavity in earlier defined states. The velocity
p V(4p)! of the second atom is chosen such that it changes phase of

In Fig. 4 we show the comparison of detection probabilitiesthe cavity field byr/2. The detection of a second atom wil

for the cavity field in the compass state, Schrodinger cat stat@roJect the cavity field in the state
No(|@)+|-a)), and coherent statly). We observe that the
revival time is larger for the cat state than the revival time for
the compass state and the revival time is larger for the co- i i gt =
herent state than the revival time for cat states. The reduction X(ja"e™) + |~ ia"e™?)) + @ (o e

in revival times is of increasing granular nature of photon +|ia"e™?)) + d0rt0)(| o ™) + |- i€ ™?))],
distribution from the coherent state to compass state. (B4)

APPENDIX B yvherea”:a’e‘iﬁZ. For ear_lier defined conditions on phases
in the method for preparing the compass stgtg 6,=n,

In this appendix we follow the argument of Davidovieh  +7/4 and6,=n,+ /2, the statgB4) becomes the same as
al. [3] to show that the detection efficiency is not a seriousstate(22). In a similar way one can see that the prepared
issue. After passing the first atoAthrough the cavity, the state will be a compass state if one atom similar to aBbm
field state is projected passes undetected between the aténandB.

’
|CB> — N_[ei 771+7]2+37T/4(|a//ei71'/2> + ‘| a!/eiﬂ'/2>) + ei(01+772+77/2)
2
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