564 research outputs found

    Magnetic Transition in the Kondo Lattice System CeRhSn2

    Full text link
    Our resistivity, magnetoresistance, magnetization and specific heat data provide unambiguous evidence that CeRhSn2 is a Kondo lattice system which undergoes magnetic transition below 4 K.Comment: 3 pages text and 5 figure

    Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles

    Get PDF
    We report Muon Spin Relaxation studies in weak transverse fields of the superconductivity in the metal cluster compound, Ga_84\_{84}[N(SiMe_3\_{3})_2\_{2}]_20\_{20}-Li_6\_{6}Br_2\_{2}(thf)_20⋅\_{20}\cdot 2toluene. The temperature and field dependence of the muon spin relaxation rate and Knight shift clearly evidence type II bulk superconductivity below T_c≈7.8T\_{\text{c}}\approx7.8 K, with B_c1≈0.06B\_{\text{c1}}\approx 0.06 T, B_c2≈0.26B\_{\text{c2}}\approx 0.26 T, κ∼2\kappa\sim 2 and weak flux pinning. The data are well described by the s-wave BCS model with weak electron-phonon coupling in the clean limit. A qualitative explanation for the conduction mechanism in this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page

    Proximity effects in the superconductor / heavy fermion bilayer system Nb / CeCu_6

    Get PDF
    We have investigated the proximity effect between a superconductor (Nb) and a 'Heavy Fermion' system (CeCu_6) by measuring critical temperatures TcT_c and parallel critical fields H_{c2}^{\parallel}(T) of Nb films with varying thickness deposited on 75 nm thick films of CeCu_6, and comparing the results with the behavior of similar films deposited on the normal metal Cu. For Nb on CeCu_6 we find a strong decrease of T_c with decreasing Nb thickness and a finite critical thickness of the order of 10 nm. Also, dimensional crossovers in H_{c2}^{\parallel}(T) are completely absent, in strong contrast with Nb/Cu. Analysis of the data by a proximity effect model based on the Takahashi-Tachiki theory shows that the data can be explained by taking into account both the high effective mass (or low electronic diffusion constant), {\it and} the large density of states at the Fermi energy which characterize the Heavy Fermion metal.Comment: 7 pages, 2 figure. Manuscript has been submitted to a refereed journa

    Bonding and elementary steps in catalysis

    Get PDF

    Bonding and elementary steps in catalysis

    Get PDF
    • …
    corecore