24 research outputs found
ANALYSIS OF OPERATING CONDITIONS AND MODES INFLUENCE ON TECHNICAL STATE OF MAIN INSULATION OF HIGH-VOLTAGE BUSHINGS OF DIFFERENT DESIGN
The results of the analysis of the influence of operating conditions and design of high-voltage bushings on the values of dielectric loss tangent of high-voltage bushing basic insulation. For analysis a model of two-factor cross-sectional dispersion analysis, which allows to simultaneously evaluate the influence of two factors and evaluate the effect of their interaction is used. In the model used, it is assumed that the effects of changes in the levels of factors are non-additive, that is, the difference in mathematical expectations between any two levels of one factor is not the same for any levels of the other. Testing the hypothesis of the significance of the influence of factors and their interactions is performed using the Fisher criterion. This method was implemented in the form of the author’ program «two-factor dispersion analysis». The results of periodic monitoring of the state of high-voltage bushings of 110, 220 and 330 kV with different types of insulation were used as initial data. Using the model of two-factor cross-sectional dispersion analysis, it was found that the aging intensity of the main insulation of bushings is influenced by both the operating conditions and the design features of the bushings. Maximum permissible values of diagnostic indicators of high-voltage bushings should be normalized taking into account such factors as nominal voltage, type of protection and type of insulation, load of bushings and the composition of consumers. Since, based on the analysis performed, it was established that these factors have a significant impact on the values of diagnostic indicators of insulation of bushings. According to the results of the analysis performed, it was established that such factors as the type of bushing and phase do not have a significant effect on the change in the values of diagnostic indicators of high-voltage bushings, and, therefore, they can be ignored when determining the maximum permissible values of the indicators
New Data on Comparative Cytogenetics of the Mouse-Like Hamsters (Calomyscus Thomas, 1905) from Iran and Turkmenistan.
The taxonomy of the genus Calomyscus remains controversial. According to the latest systematics the genus includes eight species with great karyotypic variation. Here, we studied karyotypes of 14 Calomyscus individuals from different regions of Iran and Turkmenistan using a new set of chromosome painting probes from a Calomyscus sp. male (2n = 46, XY; Shahr-e-Kord-Soreshjan-Cheshme Maiak Province). We showed the retention of large syntenic blocks in karyotypes of individuals with identical chromosome numbers. The only rearrangement (fusion 2/21) differentiated Calomyscus elburzensis, Calomyscus mystax mystax, and Calomyscus sp. from Isfahan Province with 2n = 44 from karyotypes of C. bailwardi, Calomyscus sp. from Shahr-e-Kord, Chahar Mahal and Bakhtiari-Aloni, and Khuzestan-Izeh Provinces with 2n = 46. The individuals from Shahdad tunnel, Kerman Province with 2n = 51-52 demonstrated non-centric fissions of chromosomes 4, 5, and 6 of the 46-chromosomal form with the formation of separate small acrocentrics. A heteromorphic pair of chromosomes in a specimen with 2n = 51 resulted from a fusion of two autosomes. C-banding and chromomycin A3-DAPI staining after G-banding showed extensive heterochromatin variation between individuals
Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale