505 research outputs found

    Governance in the Italian Processed Tomato Value Chain: The Case for an Interbranch Organisation

    Get PDF
    Collective action among producers is a corrective measure for power imbalance, which affects primary producers in agro-food supply chains. As associations of producers and processors, Interbranch Organisations (IBOs) promote dialogue, best practice, and market transparency. However, interbranch cooperation is still a less explored subject in agro-food governance studies. Therefore, the present paper aims to analyse the role of IBO North Italy for Processing Tomato (IBO NIPT) in the governance of the processed tomato value chain. The IBO for Processing Tomatoes of Northern Italy was chosen as a case study as it is one of the eight recognized IBOs in the country and Italy is the third biggest producer of tomatoes for processing worldwide. Semi-structured interviews with stakeholders involved in the processed tomato value chain were carried out to reach this aim. Abridged transcripts were analysed through thematic analysis by two or three researchers. The present study has three research steps: first, to explore the history of the IBO NIPT; second, to explore its current role as collective institution acting towards power imbalances; third, the IBO’s role in reference price streamlining. A multi-theoretical approach based on the following three theoretical frameworks was used to analyse the interviews: New Institutional Economics (NIE); Devaux’s framework for collective action; and Transaction Cost Economics. The paper highlights the role of local institutions in bringing innovations in the food supply chain and suggests that the future of IBOs in Italy has to be expanded beyond reference price streamlining and could benefit from the cooperation of retailers

    Unidirectional and diffractionless surface plasmon-polaritons on three-dimensional nonreciprocal plasmonic platforms

    Get PDF
    Light-matter interactions in conventional nanophotonic structures typically lack directionality. Furthermore, surface waves supported by conventional material substrates do not usually have a preferential direction of propagation, and their wavefront tends to spread as it propagates along the surface, unless the surface or the excitation are properly engineered and structured. In this article, we theoretically demonstrate the possibility of realizing \emph{unidirectional and diffractionless surface-plasmon-polariton modes} on a nonreciprocal platform, namely, a gyrotropic magnetized plasma. Based on a rigorous Green function approach, we provide a comprehensive and systematic analysis of all the available physical mechanisms that may bestow the system with directionality, both in the sense of one-way excitation of surface waves, and in the sense of directive diffractionless propagation along the surface. The considered mechanisms include (i) the effect of strong and weak forms of nonreciprocity, (ii) the elliptic-like or hyperbolic-like topology of the modal dispersion surfaces, and (iii) the source polarization state, with the associated possibility of chiral surface-wave excitation governed by angular-momentum matching. We find that three-dimensional gyrotropic plasmonic platforms support a previously-unnoticed wave-propagation regime that exhibit several of these physical mechanisms simultaneously, allowing us to theoretically demonstrate, for the first time, unidirectional surface-plasmon-polariton modes that propagate as a single ultra-narrow diffractionless beam. We also assess the impact of dissipation and nonlocal effects. Our theoretical findings may enable a new generation of plasmonic structures and devices with highly directional response

    Native NIR-emitting single colour centres in CVD diamond

    Get PDF
    Single-photon sources are a fundamental element for developing quantum technologies, and sources based on colour centres in diamonds are among the most promising candidates. The well-known NV centres are characterized by several limitations, thus few other defects have recently been considered. In the present work, we characterize in detail native efficient single colour centres emitting in the near infra-red in both standard IIa single-crystal and electronic-grade polycrystalline commercial CVD diamond samples. In the former case, a high-temperature annealing process in vacuum is necessary to induce the formation/activation of luminescent centres with good emission properties, while in the latter case the annealing process has marginal beneficial effects on the number and performances of native centres in commercially available samples. Although displaying significant variability in several photo physical properties (emission wavelength, emission rate instabilities, saturation behaviours), these centres generally display appealing photophysical properties for applications as single photon sources: short lifetimes, high emission rates and strongly polarized light. The native centres are tentatively attributed to impurities incorporated in the diamond crystal during the CVD growth of high-quality type IIa samples, and offer promising perspectives in diamond-based photonics.Comment: 27 pages, 10 figures. Submitted to "New Journal of Phsyics", NJP-100003.R

    Towards joint reconstruction of noise and losses in quantum channels

    Get PDF
    The calibration of a quantum channel, i.e. the determination of the transmission losses affecting it, is definitely one of the principal objectives in both the quantum communication and quantum metrology frameworks. Another task of the utmost relevance is the identification, e.g. by extracting its photon number distribution, of the noise potentially present in the channel. Here we present a protocol, based on the response of a photon-number-resolving detector at different quantum efficiencies, able to accomplish both of these tasks at once, providing with a single measurement an estimate of the transmission losses as well as the photon statistics of the noise present in the exploited quantum channel. We show and discuss the experimental results obtained in the practical implementation of such protocol, with different kinds and levels of noise.Comment: 6 pages, 4 figure

    Self-reported knee symptoms assessed by KOOS questionnaire in downhill runners (skyrunners)

    Get PDF
    Background: The knee is the weight-bearing joint most commonly associated with sports injuries, and therefore is most at risk of developing degenerative changes, including osteoarthritis. Skyrunners can be considered to be at risk of developing symptoms of post-traumatic osteoarthritis due to downhill running. Aim: The aim of this study was to analyze the health of the knee joints of a large group of these athletes via a specific self-report questionnaire. Methods: This study was carried out by asking the participants of seven official Skyraces (22.4±3.1 km length; 1596±393 m elevation) to fill out a questionnaire. Information regarding age, sex, downhill elevation (m) during training and competitions over the last month, and history of previous knee injury was also collected before the participants filled out the Knee injury and Osteoarthritis Outcome Score (KOOS), which is a reliable and validated instrument designed to assess patients' opinions about their knees and associated problems that can result in post-traumatic osteoarthritis. Athletes were divided into six age groups (from 17 to 70 years) and 12 groups based on the downhill gradient they had covered over the last month (from 1,000 to 40,000 m). Results: Six hundred twenty-one questionnaires were collected from 45% of the participants in the seven races. Multivariate analysis revealed that self-reported KOOS scores were unrelated to age, sex and monthly downhill gradient. Only 74 (12%) of the participants reported previous knee injuries. Significant differences in the five subscales of the KOOS were found between skyrunners with and without previous knee injuries (P<0.01). Conclusions: In the studied population, regular training for downhill running and participation in Skyraces could not be considered risk factors for subjective knee symptoms. Skyrunners with selfreported histories of knee injuries scored worse on all five subscales of the KOO

    Self consistent, absolute calibration technique for photon number resolving detectors

    Full text link
    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.Comment: 9 pages, 2 figure
    • …
    corecore