202 research outputs found

    Vanishing conductivity of quantum solitons in polyacetylene

    Full text link
    Quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. We present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field.Comment: To appear in J. Phys. A: Math. Theor., 15 page

    Pairing and superconductivity in the flat band: Creutz lattice

    Full text link
    We use unbiased numerical methods to study the onset of pair superfluidity in a system that displays flat bands in the noninteracting regime. This is achieved by using a known example of flat band systems, namely the Creutz lattice, where we investigate the role of local attractive interactions in the U<0U < 0 Hubbard model. Going beyond the standard approach used in these systems where weak interactions are considered, we map the superfluid behavior for a wide range of interaction strengths and exhibit a crossover between BCS and tightly bound bosonic fermion pairs. We further contrast these results with a standard two-leg fermionic ladder, showing that the pair correlations, although displaying algebraic decay in both cases, are longer ranged in the Creutz lattice, signifying the robustness of pairing in this system.Comment: 11 pages, 12 figures; as publishe

    Exact Asymptotic Behaviour of Fermion Correlation Functions in the Massive Thirring Model

    Full text link
    We obtain an exact asymptotic expression for the two-point fermion correlation functions in the massive Thirring model (MTM) and show that, for β2=8π\beta^2=8\pi, they reproduce the exactly known corresponding functions of the massless theory, explicitly confirming the irrelevance of the mass term at this point. This result is obtained by using the Coulomb gas representation of the fermionic MTM correlators in the bipolar coordinate system.Comment: To appear in J. Phys. A: Math. Gen. 12 page

    Sine-Gordon/Coulomb Gas Soliton Correlation Functions and an Exact Evaluation of the Kosterlitz-Thouless Critical Exponent

    Full text link
    We present an exact derivation for the asymptotic large distance behavior of the spin two-point correlation function in the XY-model. This allows for the exact obtainment of the critical exponent η=1/4\eta=1/4 at the Kosterlitz-Thouless transition that occurs in this model and in the 2D neutral Coulomb gas and which has been previously obtained by scaling arguments. In order to do that, we use the language of sine-Gordon theory to obtain a Coulomb Gas description of the XY-model spin correlation function, which becomes identified with the soliton correlator of that theory. Using a representation in terms of bipolar coordinates we obtain an exact expression for the asymptotic large distance behavior of the relevant correlator at β2=8π\beta^2=8\pi, which corresponds to the Kosterlitz-Thouless transition. The result is obtained by approaching this point from the plasma (high-temperature) phase of the gas. The vortex correlator of the XY-model is also obtained using the same procedure.Comment: To appear in J. Stat. Phys., 11 page

    A rare case of a retroperitoneal enterogenous cyst with in-situ adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retroperitoneal enterogenous cysts are uncommon and adenocarcinoma within such cysts is a rare complication.</p> <p>Case presentation</p> <p>We present the third described case of a retroperitoneal enterogenous cyst with adenocarcinomatous changes and only the second reported case whereby the cyst was not arising from any anatomical structure.</p> <p>Conclusion</p> <p>This case demonstrates the difficulties in making a diagnosis as well as the importance of a multi-disciplinary approach, and raises further questions regarding post-operative treatment with chemotherapy.</p

    Next-generation laser retroreflectors for GNSS, solar system exploration, geodesy, gravitational physics and earth observation

    Get PDF
    The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description

    The Spherically Symmetric Standard Model with Gravity

    Full text link
    Spherical reduction of generic four-dimensional theories is revisited. Three different notions of "spherical symmetry" are defined. The following sectors are investigated: Einstein-Cartan theory, spinors, (non-)abelian gauge fields and scalar fields. In each sector a different formalism seems to be most convenient: the Cartan formulation of gravity works best in the purely gravitational sector, the Einstein formulation is convenient for the Yang-Mills sector and for reducing scalar fields, and the Newman-Penrose formalism seems to be the most transparent one in the fermionic sector. Combining them the spherically reduced Standard Model of particle physics together with the usually omitted gravity part can be presented as a two-dimensional (dilaton gravity) theory.Comment: 58 pages, 2 eps figure
    corecore