167 research outputs found

    Emerging role of metabolomics in ovarian cancer diagnosis

    Get PDF
    Ovarian cancer is considered a silent killer due to the lack of clear symptoms and efficient diagnostic tools that often lead to late diagnoses. Over recent years, the impelling need for proficient biomarkers has led researchers to consider metabolomics, an emerging omics science that deals with analyses of the entire set of small-molecules (≤1.5 kDa) present in biological systems. Metabolomics profiles, as a mirror of tumor–host interactions, have been found to be useful for the analysis and identification of specific cancer phenotypes. Cancer may cause significant metabolic alterations to sustain its growth, and metabolomics may highlight this, making it possible to detect cancer in an early phase of development. In the last decade, metabolomics has been widely applied to identify different metabolic signatures to improve ovarian cancer diagnosis. The aim of this review is to update the current status of the metabolomics research for the discovery of new diagnostic metabolomic biomarkers for ovarian cancer. The most promising metabolic alterations are discussed in view of their potential biological implications, underlying the issues that limit their effective clinical translation into ovarian cancer diagnostic tools

    1H-NMR plasma lipoproteins profile analysis reveals lipid metabolism alterations in HER2-positive breast cancer patients

    Get PDF
    The lipid tumour demand may shape the host metabolism adapting the circulating lipids composition to its growth and progression needs. This study aims to exploit the straightforward 1 H-NMR lipoproteins analysis to investigate the alterations of the circulating lipoproteins’ fractions in HER2-positive breast cancer and their modulations induced by treatments. The baseline1H-NMR plasma lipoproteins profiles were measured in 43 HER2-positive breast cancer patients and compared with those of 28 healthy women. In a subset of 32 patients, longitudinal measurements were also performed along neoadjuvant chemotherapy, after surgery, adjuvant treatment, and during the two-year follow-up. Differences between groups were assessed by multivariate PLS-DA and by univariate analyses. The diagnostic power of lipoproteins subfractions was assessed by ROC curve, while lipoproteins time changes along interventions were investigated by ANOVA analysis. The PLS-DA model distinguished HER2-positive breast cancer patients from the control group with a sensitivity of 96.4% and specificity of 90.7%, mainly due to the differential levels of VLDLs subfractions that were significantly higher in the patients' group. Neoadjuvant chemotherapy-induced a significant drop in the HDLs after the first three months of treatment and a specific decrease in the HDL-3 and HDL-4 subfractions were found significantly associated with the pathological complete response achievement. These results indicate that HER2-positive breast cancer is characterized by a significant host lipid mobilization that could be useful for diagnostic purposes. Moreover, the lipoproteins profiles alterations induced by the therapeutic interventions could predict the clinical outcome supporting the application of1H-NMR lipoproteins profiles analysis for longitudinal monitoring of HER2-positive breast cancer in large clinical studies

    Integration of serum metabolomics into clinical assessment to improve outcome prediction of metastatic soft tissue sarcoma patients treated with trabectedin

    Get PDF
    Soft tissue sarcomas (STS) are a group of rare and heterogeneous cancers with few diagnostic or prognostic biomarkers. This metabolomics study aimed to identify new serum prognostic biomarkers to improve the prediction of overall survival in patients with metastatic STS. The study enrolled 24 patients treated with the same trabectedin regimen. The baseline serum metabolomics profile, targeted to 68 metabolites encompassing amino acids and bile acids pathways, was quantified by liquid chromatography-tandem mass spectrometry. Correlations between individual metabolomics profiles and overall survival were examined and a risk model to predict survival was built by Cox multivariate regression. The median overall survival of the studied patients was 13.0 months (95% CI, 5.6–23.5). Among all the metabolites investigated, only citrulline and histidine correlated significantly with overall survival. The best Cox risk prediction model obtained integrating metabolomics and clinical data, included citrulline, hemoglobin and patients’ performance status score. It allowed to distinguish patients into a high-risk group with a low median overall survival of 2.1 months and a low-to moderate-risk group with a median overall survival of 19.1 months (p < 0.0001). The results of this metabolomics translation study indicate that citrulline, an amino acid belonging to the arginine metabolism, represents an important metabolic signature that may contribute to explain the high inter-patients overall survival variability of STS patients. The risk prediction model based on baseline serum citrulline, hemoglobin and performance status may represent a new prognostic tool for the early classification of patients with metastatic STS, according to their overall survival expectancy

    Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool

    Get PDF
    Hereditary cancer syndromes account for nearly 10% of cancers even though they are often underdiagnosed. Finding a pathogenic gene variant could have dramatic implications in terms of pharmacologic treatments, tailored preventive programs, and familiar cascade testing. However, diagnosing a hereditary cancer syndrome could be challenging because of a lack of validated testing criteria or because of their suboptimal performance. In addition, many clinicians are not sufficiently well trained to identify and select patients that could benefit from a genetic test. Herein, we searched the available literature to comprehensively review and categorize hereditary cancer syndromes affecting adults with the aim of helping clinicians in their daily clinical practice through a visual tool

    Drug holidays and overall survival of patients with metastatic colorectal cancer

    Get PDF
    Different de-escalation strategies have been proposed to limit the risk of cumulative toxicity and guarantee quality of life during the treatment trajectory of patients with metastatic colorectal cancer (mCRC). Programmed treatment interruptions, defined as drug holidays (DHs), have been implemented in clinical practice. We evaluated the association between DHs and overall survival (OS). This was a retrospective study, conducted at the University Hospital of Udine and the IRCCS CRO of Aviano. We retrieved records of 608 consecutive patients treated for mCRC from 1 January 2005 to 15 March 2017 and evaluated the impact of different de-escalation strategies (maintenance, DHs, or both) on OS through uni-and multivariate Cox regression analyses. We also looked at attrition rates across treatment lines according to the chosen strategy. In our study, 19.24% of patients received maintenance therapy, 16.12% DHs, and 9.87% both, while 32.07% continued full-intensity first-line treatment up to progression or death. In uni-and multivariate analyses first-line continuous treatment and early discontinuation (treatment for less than 3 months) were associated to worse OS compared to non-continuous strategies (HR, 1.68; 95% CI, 1.22\u20132.32; p = 0.002 and HR,4.89; 95% CI, 3.33\u20137.19; p < 0.001, respectively). Attrition rates were 22.8%, 20.61%, and 19.64% for maintenance, DHs, or both, respectively. For continuous therapy and for treatment of less than 3 months it was 21.57% and 49%. De-escalation strategies are safe and effective options. DHs after initial induction chemotherapy may be considered in clinically selected patients with metastatic colorectal cancer

    Prospective, Multicenter Phase II Trial of Non-Pegylated Liposomal Doxorubicin Combined with Ifosfamide in First-Line Treatment of Advanced/Metastatic Soft Tissue Sarcomas

    Get PDF
    Doxorubicin is a widely used anticancer agent as a first-line treatment for various tumor types, including sarcomas. Its use is hampered by adverse events, among which is the risk of dose dependence. The potential cardiotoxicity, which increases with higher doses, poses a significant challenge to its safe and effective application. To try to overcome these undesired effects, encapsulation of doxorubicin in liposomes has been proposed. Caelyx and Myocet are different formulations of pegylated (PLD) and non-pegylated liposomal doxorubicin (NPLD), respectively. Both PLD and NPLD have shown similar activity compared with free drugs but with reduced cardiotoxicity. While the hand–foot syndrome exhibits a high occurrence among patients treated with PLD, its frequency is notably reduced in those receiving NPLD. In this prospective, multicenter, one-stage, single-arm phase II trial, we assessed the combination of NPLD and ifosfamide as first-line treatment for advanced/metastatic soft tissue sarcoma (STS). Patients received six cycles of NPLD (50 mg/m2) on day 1 along with ifosfamide (3000 mg/m2 on days 1, 2, and 3 with equidose MESNA) administered every 3 weeks. The overall response rate, yielding 40% (95% CI: 0.29–0.51), resulted in statistical significance; the disease control rate stood at 81% (95% CI: 0.73—0.90), while only 16% (95% CI: 0.08–0.24) of patients experienced a progressive disease. These findings indicate that the combination of NPLD and ifosfamide yields a statistically significant response rate in advanced/metastatic STS with limited toxicity
    • …
    corecore