396 research outputs found

    Quantum entanglement in strong-field ionization

    Get PDF
    We investigate the time-evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion-core. Since the standard procedure is numerically prohibitive in this case, we propose a novel way to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime

    Search for Magnetic Field Induced Gap in a High-Tc Superconductor

    Full text link
    Break junctions made of the optimally doped high temperature superconductor Bi2Sr2Ca2CuO8 with Tc of 90 K has been investigated in magnetic fields up to 12 T, at temperatures from 4.2 K to Tc. The junction resistance varied between 1kOhm and 300kOhm. The differential conductance at low biases did not exhibit a significant magnetic field dependence, indicating that a magnetic-field-induced gap (Krishana et al., Science 277 83 (1997)), if exists, must be smaller than 0.25 meV.Comment: 3 pages, 2 figure

    Magnetic-field-induced transition in BaVS3

    Full text link
    The metal-insulator transition (MIT) of BaVS3 is suppressed under pressure and above the critical pressure of p~2GPa the metallic phase is stabilized. We present the results of detailed magnetoresistivity measurements carried out at pressures near the critical value, in magnetic fields up to B=12T. We found that slightly below the critical pressure the structural tetramerization -- which drives the MIT -- is combined with the onset of magnetic correlations. If the zero-field transition temperature is suppressed to a sufficiently low value (T_MI<15K), the system can be driven into the metallic state by application of magnetic field. The main effect is not the reduction of T_MI with increasing B, but rather the broadening of the transition due to the applied magnetic field. We tentatively ascribe this phenomenon to the influence on the magnetic structure coupled to the bond-order of the tetramers.Comment: 5 pages, 5 figure
    corecore