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We investigate the time-evolution of quantum entanglement between an electron, liberated by a
strong few-cycle laser pulse, and its parent ion-core. Since the standard procedure is numerically
prohibitive in this case, we propose a novel way to quantify the quantum correlation in such a
system: we use the reduced density matrices of the directional subspaces along the polarization of the
laser pulse and along the transverse directions as building blocks for an approximate entanglement
entropy. We present our results, based on accurate numerical simulations, in terms of several of
these entropies, for selected values of the peak electric field strength and the carrier-envelope phase
difference of the laser pulse. The time evolution of the mutual entropy of the electron and the
ion-core motion along the direction of the laser polarization is similar to our earlier results based
on a simple one-dimensional model. However, taking into account also the dynamics perpendicular
to the laser polarization reveals a surprisingly different entanglement dynamics above the laser
intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in
the over-the-barrier ionization regime.

I. INTRODUCTION

Although quantum entanglement between two parti-
cles’ spatial motion (i.e. their positions or momenta)
dates back to the early days of quantum mechanics [1, 2],
the features of continuous variable quantum entangle-
ment [3] are still much less explored and utilized than
those of discrete variables systems [4]. The few-particle
quantum systems studied in connection with quantum
entanglement usually need special preparation proce-
dures and they are typically very sensitive to environ-
mental circumstances. In contrast to this, the strong-
field ionization of an atom is a very well explored and
understood process, both theoretically and experimen-
tally [5–26]. However, despite the fact that it is widely
used in standard procedures to generate e.g. high-order
harmonic radiation [27, 28], it is very little known that
this strong-field ionization generates also quantum en-
tanglement between the liberated electron and its parent
ion-core. In our earlier work [29, 30], based on a simple
one-dimensional model, we have already shown that the
time evolution of this quantum entanglement shows inter-
esting features. A straightforward question is, whether
these are also present in the strong-field ionization of a
real atom? In the present paper, we report about our
new results on this process: although we keep the single
active electron approximation, we do the investigation in
3 spatial dimensions, using the true Coulomb potential.
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Most of the papers on quantum entanglement in light
induced atomic processes study the correlations between
the emitted photon and the emitting atomic system [31–
33]. Papers on entanglement between a charged particle
and a photon [34, 35], entanglement in two particles’ colli-
sion [36–41] and on the temporal change of the correlation
potential during electron tunneling from a molecule [42]
give valuable insight into the quantum features of prob-
lems related to our present paper. Entanglement between
the fragments of an atomic system due to a light-induced
break-up process, like photoionization and photodissoci-
ation, was studied by Fedorov and coworkers [43, 44] in
the framework of Gaussian states. However, this latter
approach does not seem suitable enough to deal with the
problem of quantum entanglement during the strong-field
ionization of an atom, which motivated us to perform an
accurate numerical investigation of the problem.

This paper is organized as follows: in Section II, we
outline the solution of the quantum mechanical two-body
Coulomb problem under the influence of an external laser
field. In Section III, we present the details of our en-
tanglement calculations which is based on the direction-
ally reduced dynamics. Amongst others, we introduce
the spatial entropy of the wave function and the corre-
lation entropies within the directional subspaces. Using
the corresponding directional entropies, we propose an
approximate formula to quantify the total electron-core
entanglement we actually seek for. Based on this lat-
ter, we also discuss the connection to the results based
on one dimensional models. We present our numerical
results on the temporal evolution of quantum entangle-
ment during the strong-field ionization process in Section
IV. We show how do the specific quantities, including
several different entropies, reflect the system’s behavior,
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and we investigate in detail their dependence on the in-
tensity and the carrier-envelope phase difference (CEP)
of the laser pulse. Finally, we discuss the relevance of our
main results in Section V. In the Appendix, we summa-
rize the necessary theoretical background for quantum
entanglement between two particles, and recall certain
notions (e.g. correlation types, quantum conditional en-
tropy, quantum mutual entropy) which are important for
directionally reduced subsystems.

We use atomic units throughout this article (i.e. ~ = 1,
e = 1, me = 1) unless stated otherwise.

II. STRONG FIELD IONIZATION

A. Two-body Hamiltonian

The quantum mechanical description of a hydrogen
atom, or any other atom in the single active electron ap-
proximation, driven by a strong laser pulse, is naturally
carried out as a two-body (or bipartite) problem consist-
ing of the electron (e) - ion-core (c) system. We consider
their interaction with the laser pulse in the dipole approx-
imation, i.e. as an external time-dependent electric field,
because the relevant EM field wavelengths exceed the size
of the system by several orders of magnitude. Using the
length gauge [45] we have the following Hamiltonian for
this system:

Hec =
P2
e

2me
+

P2
c

2mc
− 1

|re − rc|
+ E(t)(re − rc), (1)

where me(= 1) and mc are the electron and core masses,
respectively.

As it is well known, this problem can be simplified by
performing a coordinate transformation to the center of
mass (r0,P0) and relative coordinates (r,P) as

r0 = αere + αcrc, P0 = Pe + Pc,
r = re − rc, P = αcPe − αePc,

(2)

where

αe = me/M, αc = mc/M, M = me +mc. (3)

Using also the reduced mass µ = memc/M , we obtain
the Hamiltonian

Hec =
P2

0

2M
+

P2

2µ
− 1

|r|
+ E(t)r, (4)

which is separable in these coordinates, thus the solution
can be carried out in the two subsystems independently:

Ψec(re, rc, t) = Ψ(r, t)Ψ0(r0, t), (5)

where the coordinates of the two sides are connected via
the transformation (2). This very step, however, while
separates the problem in the coordinates chosen, does
still involve the entanglement of the individual particles
in Ψec.

B. Subsystem: center of mass motion

The center of mass part of the Hamiltonian describes
a free-particle propagation via the time-dependent
Schrödinger equation (TDSE)

i
∂

∂t
Ψ0 = H0Ψ0 with H0 =

P2
0

2M
, (6)

We assume that Ψ0 is initially a localized Gaussian wave
packet at rest in coordinate space, which yields the solu-
tion of (6) as

Ψ0(r0, t) =

(
σ/
√
π

σ2 + i tM

)3/2

exp

(
− r20

2
(
σ2 + i tM

)) . (7)

We set the parameter σ = 1. i.e. a Bohr radius. This is
the well known free wave packet with root mean square
deviations of the center of mass coordinates in each di-
rection spreading as

∆x0 = ∆y0 = ∆z0 =
√
σ2 + t2/M2σ2 (8)

which is to be evaluated for the time interval given by the
duration Tmax of the exciting pulse. The typical value
of the latter in strong field experiments is Tmax = 300
a.u. corresponding to a few femtoseconds, used also in
our simulations. Due to the large value of M ≈ 1837,
the spreading during the interaction is negligible: around
1.3% of the original width, which will help us to make the
effect of the laser pulse on the quantum entropies more
visible in Section IV.

C. Subsystem: relative motion

We assume a linearly polarized laser field which is the
usual scenario in many strong-field processes. This sug-
gests to use cylindrical coordinates ρ =

√
x2 + y2, ϕ and

z, the latter being the direction of the external electric
field strength. We shall seek solutions that start from
the ground state of the Coulomb potential at t = 0.
This does not depend on the azimuthal angle ϕ and this
remains valid for the solution at any later time. Then
the wave function of the relative motion Ψ (z, ρ, t) obeys
the axially symmetric three-dimensional time-dependent
Schrödinger equation:

i
∂

∂t
Ψ (z, ρ, t) = [Tz + Tρ + V (z, ρ, t)] Ψ (z, ρ, t) (9)

where the two relevant terms of the kinetic energy oper-
ator are given by

Tz = − 1

2µ

∂2

∂z2
, Tρ = − 1

2µ

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ

]
, (10)

and V includes both the Coulomb and the time-
dependent external potential:

V (z, ρ, t) = − 1√
z2 + ρ2

+ z · Ez(t). (11)
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Because we are working in the nonperturbative regime,
an analytical solution of (9)-(11) is not possible, so we
have to resort to a numerical procedure. For the efficient
numerical solution of the above problem in real space, we
have developed a novel algorithm [46] that we called hy-
brid splitting method, which is built on the combination
of the fourth order finite difference approximation in the
2D Crank-Nicolson method and the (high order) split-
operator methods. The main feature of the algorithm is
that it incorporates the Coulomb singularity and the sin-
gularity of Tρ directly using the required Neumann and
Robin boundary conditions

lim
ρ→0

∂Ψ

∂ρ

∣∣∣∣
z 6=0

= 0, and
[
∂

∂ρ
+ µ

]
Ψ

∣∣∣∣
r=0

= 0 (12)

at the gridpoints on the symmetry axis (ρ = 0). We can
achieve reasonable accuracy already at the uniform spa-
tial discretization step size ∆z = ∆ρ = 0.2, which may
seem to be rough at first sight, but it turns out to be suf-
ficient [46] in view of the large extension of the ionized
part of the relative wave function. For all the simula-
tions presented in this paper, the initial state is the 1s
ground state with energy ε0 = −µ/2 and µ = 0.999456,
corresponding to the reduced mass of the proton-electron
system.

D. Characterization of the ionization

Now we discuss the properties of the expected ioniza-
tion process and some general features of the dynamics
of the system. First, we assume an external field of the
form

Ez(t) = Fg(t) cos (ωt) , (13)

where F is the parameter of the amplitude of the external
electric field and g(t) gives the finite pulse shape which is
scaled so that its minima are 0 and its maxima are 1. We
will use the particular form of (58) later in this article.
We assume Ez(t) = 0 for t ≤ 0.

Regarding the electric field amplitude parameter F ,
there is a specific value Ftu that separates two regimes, in
which the system has distinct behavior. In the tunneling
ionization regime F < Ftu there is always a potential
barrier V (Ftu, t) > ε0 in the vicinity of the atom, while
in the over-the-barrier ionization regime F > Ftu this
barrier does vanish to a varying extent both in space and
time, determined by F and by the shape of the laser
pulse. By solving for z = z (ε0, Ftu) in

ε0 = −1

z
+ z · Ftu (14)

at cross section ρ = 0, a quick calculation reveals that
this critical value is Ftu = |ε0|2/4, i.e. Ftu ≈ 0.0624.

Since the external field affects only the dynamics of the
relative core-electron motion, we can use certain physical

quantities calculated only from the relative wave function
to describe its effects. From the several possibilities we
picked only two of them.

The first is the z component of the mean velocity, i.e.
the average of the relative probability current density,
given by

vz(t) = Im 〈Ψ(t)|∂zΨ(t)〉 /µ. (15)

This gives information about the kinematical properties
of the “classical” particle which behaves according to the
Ehrenfest theorems. (We note that there can be no mean
displacement in the transverse directions x, y because of
the dipole approximation we use.)

The other descriptive time-dependent quantity we use,
is based on the projection onto the initial state

f(t) = 1− |〈Ψ(0)|Ψ(t)〉|2 (16)

which is actually the loss of the ground state popula-
tion. This f(t) can also be interpreted as the probability
of leaving the vicinity of the center of mass (r0 = 0).
We have found that f(Tmax) is a good indicator of the
fraction of ionization, incorporated in a continuum wave
packet, because even the largest populations of the ex-
cited bound hydrogen states turn out to be an order of
magnitude smaller than the ground state population loss
in this strong field process. This has been verified numer-
ically in our actual calculations, and this feature of (16)
was also utilized in other strong-field calculations like the
well-known Lewenstein model [11].

We will use these quantities for the analysis of the en-
tanglement dynamics, illustrating how much the atom
was ionized and approximately in which direction the
particle moves.

III. ENTANGLEMENT CALCULATION

According to the standard procedure of calculating the
entanglement (for more details see Appendix A) we need
first the density matrix of the composite system

%ec(r
′
e, re, r

′
c, rc, t) = Ψ∗ec(r

′
e, r
′
c, t)Ψec(re, rc, t) (17)

and then the reduced single particle density matrices that
are obtained by tracing over the other particle’s degrees
of freedom:

%c(r
′
c, rc, t) = Tre [%̂ec] =

ˆ
%ec(re, re, r

′
c, rc, t)dr

3
e, (18)

%e(r
′
e, re, t) = Trc [%̂ec] =

ˆ
%ec(r

′
e, re, rc, rc, t)dr

3
c . (19)

As it is known, a good measure of bipartite entanglement
is the Neumann entropy:

SN (t) = −Tr [%̂e(t) ln %̂e(t)] = −Tr [%̂c(t) ln %̂c(t)] . (20)

In our case Ψec of Eq. (5) contains Ψ0 as given analyt-
ically by Eq. (7), while the relative part Ψ is available
only numerically in cylindrical coordinates (z; ρ), i.e it is
a large two-dimensional array of numbers.
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A. The necessity of a different approach

Now, if we try to apply the machinery of Eqs. (17)-(20)
with the discrete function (5), we can quickly conclude
that the array size of the discretized density matrices in-
volved will be prohibitively high. If we try to perform
the reduction (18) and then to calculate (20), we face ef-
fectively an ∼ N9 operations count per one value of Neu-
mann entropy, where N is the characteristic number of
gridpoints of a spatial coordinate. Using a typical setup,
we needed at least N = 103 gridpoints to contain the ion-
ized electron waves. So if we make an optimistic guess
that the execution takes about 1 second per 109 opera-
tions, then obtain a runtime of 32×109 years. This makes
the computation according to the standard approach of
Appendix A practically impossible, thus we have to find
a viable approximation.

B. Directionally reduced dynamics

We propose to circumvent the prohibitively large nu-
merical load of the problem by restricting ourselves to
only one coordinate direction (at a time), i.e. to utilize
the directionally reduced dynamics. Since the system is
axially symmetric around the polarization direction of
the laser field (the axis ρ = 0 at all times), it seems to be
plausible to assume that the interesting physics happens
in this direction. However, we are also going to use the
information contained in the perpendicular directions.

The directionally reduced density matrices of the rela-
tive part are the following

%x(x′, x) =

¨
Ψ∗(x′, y, z)Ψ(x, y, z)dzdy, (21)

%z(z
′, z) = 2π

ˆ
Ψ∗(z′, ρ)Ψ(z, ρ)ρdρ (22)

and because of the axial symmetry we have for the y
direction

%x = %y. (23)

The directionally reduced density matrix of the center of
mass part is

%0,z(z
′
0, z0) = 2π

ˆ
Ψ∗0(z′0, ρ0)Ψ0(z0, ρ0)ρ0dρ0. (24)

Due to the assumed Gaussian form (7) it is a pure
state density matrix which can be calculated analytically.
Again, because of symmetry we have in the other direc-
tions

%0,z = %0,y = %0,x. (25)

In addition to this, only the density matrix of the relative
part must be evaluated numerically.

After we have completed these, we will utilize that the
separability is true in each direction:

%ec,x = %x ⊗ %0,x and %ec,z = %z ⊗ %0,z. (26)

Finally, we apply the necessary coordinate transforma-
tion (2) to (26), then the x and z directional two particle
reduced density matrices are given by

%ec,x(x′e, xe, x
′
c, xc) = %x(x′e − x′c, xe − xc)×
%0,x(αex

′
e + αcx

′
c, αexe + αcxc)

(27)

%ec,z(z
′
e, ze, z

′
c, zc) = %z(z

′
e − z′c, ze − zc)×

%0,z(αez
′
e + αcz

′
c, αeze + αczc)

(28)

Then, we calculate the subsystem density matrices as
in Appendix A. Therefore, the one dimensional reduced
density matrices of the core coordinates are

%c,x(x′c, xc) = Tre [%̂ec,x] =

ˆ
%ec,x(xe, xe, x

′
c, xc)dxe,

(29)

%c,z(z
′
c, zc) = Tre [%̂ec,z] =

ˆ
%ec,z(ze, ze, z

′
c, zc)dze,

(30)
and, similarly, we have for the electron coordinates

%e,x(x′e, xe) = Trc [%̂ec,x] =

ˆ
%ec,x(x′e, xe, xc, xc)dxc.

(31)

%e,z(z
′
e, ze) = Trc [%̂ec,z] =

ˆ
%ec,z(z

′
e, ze, zc, zc)dzc.

(32)
In this way we have the building blocks of the two-body
Coulomb system as six pieces of one dimensional reduced
density matrices, which can already be computed in a
reasonable amount of time.

C. Correlation quantification per direction

From these reduced density matrices we can calculate
several quantum entropies, and each has a specific in-
teresting aspect, we will list them in the following. For
simplicity, we use mainly formulae of the von Neumann
entropy, and we usually drop its subscript N.

Spatial entropy : this can be calculated from the re-
duced density matrix of the relative part as

Sz(t) = SN (%z(t)) = −
∑
k

λ
(z)
k (t) lnλ

(z)
k (t), (33)

where λ(z)k (t) are the eigenvalues of %z(t). We shall call
(33) “spatial entanglement” measure, because it quanti-
fies the entanglement between the coordinates z, ρ (or
the nonseparability of the numerical solution) according
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to the theory of pure bipartite systems. It is also the
entropy of the two dimensional subspace

Sec,z(t) = SN (%z(t)⊗ %0,z(t)) = Sz(t), (34)

since SN (%0,z(t)) = 0. We also note that using

Sx(t) = SN (%x(t)) = −
∑
k

λ
(x)
k (t) lnλ

(x)
k (t), (35)

where λ(x)k (t) are the eigenvalues of %x(t), is also an op-
tion as a “spatial entanglement” measure. However, since
the laser polarization coincides with the z axis, it is the
most interesting to know the nonseparability between the
z and x ⊗ y subspaces, therefore, we will prefer the use
of Sz(t).

Average mutual entropy per direction: as introduced
by the formula (A23), the (average) quantum mutual en-
tropy is a true nonseparability and correlation measure
generally, which can be used between the single coor-
dinate subsystems of the electron and the ion-core in a
given direction. They are written along the x and z di-
rection as

S(xe : xc, t) =
1

2
[Se,x(t) + Sc,x(t)− Sx(t)] , (36)

S(ze : zc, t) =
1

2
[Se,z(t) + Sc,z(t)− Sz(t)] . (37)

To remind, these are exact formulae for pure bipartite
states. However, these measures combine classical and
entanglement related correlations otherwise, and in order
to apply them as entanglement measures (per direction),
we need to look at all of their constituent parts. It is also
interesting how the conditional entropies behave.

Core entropies per direction: as we will show below,
the following quantum entropies

Sc,x(t) = SN (%c,x(t)) = −
∑
k

λ
(c,x)
k (t) lnλ

(c,x)
k (t), (38)

Sc,z(t) = SN (%c,z(t)) = −
∑
k

λ
(c,z)
k (t) lnλ

(c,z)
k (t), (39)

where λ(c,x)k (t), λ(c,z)k (t) are the eigenvalues of %c,x(t) and
%c,z(t) respectively, measure approximately the particle-
particle correlation direction-wise. The reason is the fol-
lowing: because of the orders of magnitude of mass differ-
ence present in the coordinate transformation (28), the
reduced density matrix %c,z will be close to %0,z. This
causes that only a tiny fraction (me/M) of the entropy
Sz(t) of ze ⊗ zc is transferred to subsystem zc, because
the mass difference suppresses the eigenvalues and eigen-
vectors of %z. Knowing that %0,z is a pure state density
matrix with zero entropy, we conclude that additional
surplus values in entropy Sc,z(t) quantifies a particle-
particle correlation along the z direction. In other words,

it is the nonseparability between zc and ze, which yet to
be called entanglement. The same considerations also ap-
ply to the x direction. Because these Neumann entropies
are actually correlation entropies in this case, we expect
them look really similar to the respective quantum mu-
tual entropies. For sake of completeness, we note that the
entropies (38) and (39) are also entanglement entropies
of two special bipartitions of the six coordinate quantum
system, namely xc against all the other coordinates and
zc against all the other coordinates, respectively.

Electron entropies per direction: these are also of im-
portance related to the conditional entropies, and the
distinction of quantum versus classical correlations. Sim-
ilarly, they are also special entanglement entropies of two
bipartitions of the six coordinate quantum system in sim-
ilar manner as the core entropies per direction. They are
calculated as

Se,x(t) = SN (%e,x(t)) = −
∑
k

λ
(e,x)
k (t) lnλ

(e,x)
k (t), (40)

Se,z(t) = SN (%e,z(t)) = −
∑
k

λ
(e,z)
k (t) lnλ

(e,z)
k (t), (41)

where λ(e,x)k (t), λ(e,z)k (t) are the eigenvalues of %e,x(t) and
%e,z(t) respectively. We note that although %e and %c
must have the same eigenvalues, this won’t be true for
the reduced density matrices %e,z and %c,z in direction z if
the values of Sz(t) are not negligible. (Same goes for the
x direction.) Then the coordinate transformation (28)
causes that the major fraction (mc/M) of the entropy
Sz(t) of ze ⊗ zc is transferred to subsystem ze, because
the reduced density matrix %e,z will be close to %z. Based
on the quantum information theoretic properties of the
Neumann entropies, this spurious eigenvalue contribution
can be extracted, but not completely. This “eigenvalue
extraction” we refer to can be realized by the Se,z(t) −
Sz(t) entropy subtraction, these are the single direction
negative quantum conditional entropies of the core x and
core z reduced density matrices:

− S(xc|xe, t) = Se,x(t)− Sx(t), (42)

− S(zc|ze, t) = Se,z(t)− Sz(t). (43)

Since they are related to the correlation one way or
the other, from the above reasoning it follows that
−S(xc|xe, t) and −S(zc|ze, t) should be similar to Sc,x(t)
and Sc,z(t) and therefore also to their mutual entropy,
respectively. Based on this reasoning we will see that
the subsystems xe ⊗ xc and ze ⊗ zc are mainly subject
to quantum entanglement (in accordance with (A15)),
not classical correlation (also present), which we show in
Section IV.

Upper bound of the core entropy : using the strong sub-
additivity of the Neumann entropy, an upper bound can
be given for the true 3D electron-core entanglement as

Se(t) = Sc(t) ≤ Sc,z(t) + 2Sc,x(t) = Sbound(t), (44)
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where the one dimensional core entropies were substi-
tuted into (A10), because they tend to be smaller than
those of the electrons and because of the physical rea-
sons outlined above. The equation (44) serves also as
a good analytical criteria that we should fulfill with an
approximate formula for electron-core entanglement.

D. Approximation of the entanglement

Now we introduce our approximate entanglement mea-
sure, which is one of the main purposes of this paper.

We approximate the pure state of our six-dimensional
quantum system by replacing it with

%(sep)ec (t) = %ec,x(t)⊗ %ec,y(t)⊗ %ec,z(t), (45)

which is separable direction-wise but it includes the
%ec,x(x

′

e, xe, x
′

c, xc), %ec,y(y
′

e, ye, y
′

c, yc), %ec,z(z
′

e, ze, z
′

c, zc)
two dimensional reduced density matrices, which contain
all the pair correlations between the coordinates xe-xc,
ye-yc, ze-zc, respectively. (Because of the symmetry, the
physics in the subspaces x and y are identical, so (23)
is true.) Then we obtain the entropy of %(sep)ec from
the additivity of the Neumann entropy (valid for sepa-
rable systems), and using that Sec,j(t) = Sj(t) + S0,j(t),
%ec,j = %j ⊗ %0,j , j = x, y, z as

S(sep)
ec (t) = Sx(t) + Sy(t) + Sz(t), (46)

The single-particle core and electron reduced density ma-
trices read

%(sep)e (t) = %e,x(t)⊗ %e,y(t)⊗ %e,z(t), (47)

%(sep)c (t) = %c,x(t)⊗ %c,y(t)⊗ %c,z(t), (48)

with the standard definitions (j = x, y, z):

%e,j(t) = Trc [%ec,j(t)] and %c,j(t) = Tre [%ec,j(t)] . (49)

For the entropies of these, the following hold:

Se(t) = Se,x(t) + Se,y(t) + Se,z(t), (50)

Sc(t) = Sc,x(t) + Sc,y(t) + Sc,z(t). (51)

We propose to quantify the total entanglement between
e and c based on the average mutual entropy (A23) as

Sec(e : c, t) =
1

2
S(e : c, t) =

1

2
[Se(t) + Sc(t)− Sec(t)] .

(52)
After rearranging the terms and using symmetry rela-
tions (23), (25) we obtain

Sec(e : c, t) =
1

2
[2S(xe : xc, t) + S(ze : zc, t)] (53)

as the final form of our approximate formula for the total
entanglement.

The introduction of the factor 1/2 in the above defini-
tion is useful in the case when each of the two dimensional
subsystems are in a pure state, i.e. Sec,x(t) = Sec,y(t) =
Sec,z(t) = 0. Then, the bipartite Schmidt theorem holds
in these subspaces as Se,j(t) = Sc,j(t) (with j = x, y, z),
and we obtain

S
(pure,sep)

ec (t) = Sc,x(t) + Sc,y(t) + Sc,z(t), (54)

which is by definition the exact entanglement measure.

E. Connection to a one-dimensional approximation

To ensure the comparability of our new results with
our earlier one-dimensional simulations [30], we briefly
discuss those now in relation to the previous section. Let
us assume that the potential of the relative coordinate
quantum system can be approximated in as

V (x, y, z, t) = Vz(z, t) + Vx(x) + Vy(y), (55)

i.e. the 3D Coulomb potential is replaced by some one
dimensional model potentials and the electric dipole term
is contained in Vz(z, t) only. Certain simple 3D models
can be treated with this approach also analytically: an
example of these is the Moshinsky atom [47, 48] with
a single electron in an external laser field using dipole
approximation.

Starting the numerical simulations with a potential of
the form (55) from the separable ground state of the rel-
ative system, the system will stay separable along the
x, y, z directions with the relative wave function of form

Ψ(x, y, z, t) = ψx(x)ψy(y)ψz(z, t)e
−i(ε0,x+ε0,y)t, (56)

thus its density matrix will have the time-dependent
form:

%(t) = %x ⊗ %y ⊗ %z(t). (57)

From (57) and (26) it follows that (52) is an exact entan-
glement measure, as it yields (54) as mentioned before.
Then the complete entanglement dynamics induced by
the laser field is restricted to the zc ⊗ ze subspace, de-
scribed by Sc,z(t). Due to the large mass ratio in (7), the
entanglement of the perpendicular directions changes or-
der of magnitudes slower than Sc,z(t) does, thus it can
be regarded as a constant shift.

IV. RESULTS

A. External electric field

In our simulations, we expose the hydrogen atom to
a few cycle laser pulse with a sin-squared envelope func-
tion. The corresponding time-dependent electric field has
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nonzero values only in the interval 0 ≤ t ≤ 3T according
to the formula:

Ez(t) = F · sin2

(
πt

6T

)
cos

(
2πt

T
+ CEP · π

)
, (58)

where T is the period of carrier wave, F is the strength
of the electric field, CEP ·π is the carrier envelope phase.
We keep the wavelength of the laser field through param-
eter T the same in all of the simulations: we set T = 100
which corresponds to a ∼ 725nm near infrared carrier
wave. Varying the parameter F and separately the pa-
rameter CEP, we investigate the dynamics of the system
with the emphasis on quantum entanglement.

B. Simulation procedure

The simulation of the time evolution starts from the
ground state of the relative Hamiltonian which was found
by imaginary time propagation having the energy ε0 ≈
−0.49972. Other parameters used in the numerical simu-
lations of the relative wave function are (i) discretization
parameters ∆z = ∆ρ = 0.2, and ∆t = 0.01 for the fourth
order splitting formula of [46], (ii) the total simulated
time is 330 atomic time units, (iii) absorbing imaginary
potentials are not used, (iv) the simulation box size is
varied with parameter F . The dimensions of the latter
are zmin = −500, zmax = 500, ρmax = 300 for F = 0.1.
For the evaluation of the partial derivatives z,ρ we use
fourth order finite differences, and for the evaluation of
the integrals we also use a discrete sum approximation,
both of which can be found in [46]. After this, we per-
form the reduced density matrix based calculations at
each atomic time unit.

C. Dynamics

We begin our analysis discussing the time-dependence
of the ground state population loss (16) of the relative
wave function, which is shown in Fig. 2 for several val-
ues of F . We can see sudden increases of the ground state
population loss that are happening at the local extrema
of the electric field, more and more clearly as F increases.
As we have already discussed in Section II, we make dis-
tinction between the tunneling ionization regime and the
over-the-barrier ionization regime, regarding the dynam-
ics dependent on F : starting from the former, we see from
Fig. 2 that even for F = 0.06, (just below the over-the-
barrier threshold) the total ground state population loss
is small (0.02) which implies small amount of ionization
in the tunneling regime. At F = 0.10 we have already a
significant total ground state population loss (0.33) with
prominent over-the-barrier ionization. At the highest F
shown (F = 0.12), the electric field increasingly domi-
nates the Coulomb force, and it almost doubles the total
ground state population loss (0.61) and ionization.

From Fig. 1, we can inspect how the results translate
to an averaged classical motion, using the mean velocity
component vz(t) from the formula (15). In the tunnel-
ing range (with F = 0.06 or below), vz(t) only slightly
changes with time and has oscillating component, which
implies that the relative wave function is oscillating near
the origin. For amplitudes sufficiently above the over-
the-barrier ionization threshold (F = 0.1), the velocity
somewhat correlates with the quiver motion of the clas-
sical free electron moving under the influence of the os-
cillating electric field (58). For example, vz(t) has local
extrema near the zero crossings of the electric field like
within this classical picture. With increasing F , the cor-
relation of vz(t) and this “free” classical motion becomes
more clear, signaling the increase of importance of the
ionized waves. After the laser pulse ends, the ground
state population loss stops as expected, and vz(t) ap-
pears to oscillate near a constant mean value which is
more remarkable with higher F . (This latter value can be
nonzero, which contradicts the mentioned classical pic-
ture and the three step model.)

D. Time-dependence of the quantum entropies

Now we start to analyze the time-dependent dynam-
ics of the quantum entanglement of these ionization pro-
cesses.

We begin the discussion of the various quantum en-
tropies in the direction parallel to the laser polarization
axis (z), then in the direction transverse to this po-
larization axis (x or y) and in the last paragraphs in
this subsection, we conclude with the discussion of the
total electron-core entanglement approximated by our
method. For this task, we set the electric field param-
eter to be F = 0.1 which means an intermediate, over-
the-barrier ionization range, and we choose the carrier
envelope phase to be CEP = 0.

First, we discuss the linear entropies of the reduced
density matrices %z, %c,z and %e,z. We use the notation
SL,z(t), SL,c,z(t), SL,e,z(t) and we plot them in Fig. 3
to provide them as a comparison to the Neumann en-
tropies Sz(t), Sc,z(t), Se,z(t), which are shown in Fig.
4, with the same parameters. Although these linear en-
tropies compare fairly well to the respective Neumann
entropies, the orange line in Fig. 3 shows that the quan-
tity SL,e,z(t) − SL,z(t) gives false prediction, therefore
we use only the Neumann entropies, as we have already
stated earlier.

The time-dependence of Neumann entropies corre-
sponding to the direction z are shown in Fig. 4. We
see that Sz(t) and Se,z(t) share the main features but
Sc,z(t) has a different behavior. First, let us say some
words about the time dependence of the Neumann en-
tropy Sz(t) (plotted with red line). Overall, this spatial
entropy of the “spatial entanglement” between z and ρ
has major increase during the process due to the ioniza-
tion: it starts from a rather small value of 0.07 and and
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has a large permanent increase during the process (to the
value 1.11). This entropy also continues to grow slowly
but steadily after the laser pulse ended, i.e. due to the
mixing effect of the Coulomb potential only. It has sud-
den increases in time near the peaks of the laser pulse,
however, with about 10 atomic time units of delays, with
the biggest jump occurring near the central peak. If we
compare this plot with the correspond curve of Fig. 1 we
clearly see that the timings of these increases synchronize
with the increases of |v̄z(t)|. Regarding the small starting
value of Sz(t), the initial state of exp(−µr) is almost sep-
arable in z and ρ, in accordance with the low value of this
entropy: particularly, the dominating eigenvalue of %z at
t = 0 is λ(z)1 = 0.9872. This clearly shows that the Neu-
mann entropies, in general, take into account the other
much smaller eigenvalues in a more pronounced way.

In Fig. 4 we show the Neumann entropies Se,z(t) and
Sc,z(t), and the negative conditional entropy Se,z(t) −
Sz(t), with blue, green and orange lines, respectively, in
order to attempt to answer the question, how the core-
electron correlation works in the directional z subsystem.
We stated in Section III, that the coordinate transforma-
tion (28) creates a special type of correlation. Therefore,
we should be able to acquire (at least partially) the cor-
relation information contained in Sc,z(t) from the Neu-
mann entropy Se,z(t). As it is clearly shown by Fig. 4,
the majority of the time-dependent features of Se,z(t)
seem to be inherited from the Neumann entropy of the
reduced density matrix %z(t) (for example, the sudden in-
creases related to the ionization), they are only shifted to
higher values. However, if we carefully inspect the curve
of Se,z(t)− Sz(t) in Fig. 4 (in orange) we can easily ob-
serve that its main features (like its correlation with the
laser pulse) are very similar to those of Sc,z(t). Because
these quantities are close to each other, it means that in
this subsystem the major correlation is quantum entan-
glement, as we stated earlier. Therefore, S(zc : ze, t), de-
fined in (A23), can be used as an approximate entangle-
ment measure. We also make the observation that Sz(t)
is always upper bounded by Se,z(t), and the respective z
coordinate of the lighter electron contains more entropy
than that of the heavier ion-core, as expected.

Next, we discuss the time dependence of the result-
ing mutual entropy S(zc : ze, t), which is plotted in Fig.
4 as a purple curve. This quantity inherits its features
from Sc,z(t) and Se,z(t)−Sz(t) by construction: it starts
from an intermediate value (0.23), rises and falls several
times during the process, contrary to Sz(t). It stays al-
most constant after the laser pulse, around a value (0.25)
that is only slightly higher than the initial value. The
time-dependence of S(zc : ze, t) correlates better with
the shape of the laser pulse, and also has much smaller
peak value in the time window, than the aforementioned
spatial entropy. Interestingly, the rapid changes in ion-
ization probability during the process are not reflected
by this particle-particle entanglement of the z directional
subspace. The changes of this mutual entropy are more
correlated with the average velocity vz(t), which we ex-

pand more in the next subsection.
The curves of Fig. 4 clearly show that the classical cor-

relations also change under the effect of the laser pulse:
the gap between Sc,z(t) and Se,z(t) − Sz(t) is dynami-
cally increasing and decreasing, synchronously with the
electric field. Even though the respective mutual en-
tropy includes these classical effects, the also synchronous
changes in Sc,z(t) and in Se,z(t) − Sz(t) signal that the
quantum entanglement behaves the same way, and the
high value of the negative conditional entropy causes it
to be the major correlation.

Here we ought to note that the actual related values
of Sc,z(t), S(zc : ze, t), Se,z(t)− Sz(t) are also influenced
by Ψ0, that is by the adjustable parameter σ2. Accord-
ing to our simulations, the change of σ2 does not affect
the aforementioned observations of the time-dependent
characteristics of these entropies. The major difference
between different values of σ2 is that it results in a shift
of the values S(zc : ze, t) and it affects the already slow
dispersion rate of Ψ0.

The time-dependence of the same of quantum entropies
which characterize the reduced dynamics along the x axis
(same along y) can be seen in Fig. 5. However, we
limited the range of the time axis (to 280 atomic time
units) in this case, since one of this entropy calculations
is done about O(N4) steps instead of O(N3), and it also
involves that much interpolation in order to do integra-
tion in Cartesian coordinates.

From Fig. 5, we can see a familiar shape related to the
spatial entropy in the form of Sx(t), because the values
of the Neumann entropy Sx(t) mirrors that of Sz(t), but
they are not the same. However, they are actually identi-
cal at t = 0 due to the spherical symmetry of 1s Coulomb
state, i.e. (a single index) tripartite Schmidt decomposi-
tion [49] of the initial relative wave function exists. Then
the laser pulse causes this wave function to slowly depart
from this tripartite Schmidt state as Sx(t) and Sz(t) dif-
fer more. However, both Sx(t) and Sz(t) depict the time
dependence of spatial entropy adequately.

Now we turn our attention to the particle-particle cor-
relation of the xe and xc coordinates. First, this cor-
relation is quantum entanglement because Sc,x(t) and
its negative conditional entropy i.e. Se,x(t) − Sx(t) stay
really close to each other which is only possible if xe
and xc are entangled, therefore S(xe : xc, t) is a good
entanglement measure. Now, we can also see that the
S(xe : xc, t) shares some time-dependent features with
S(ze : zc, t), for example, its maxima are near the zero
crossings of the laser pulse. Note, however, that the
changes in S(xe : xc, t) are considerably smaller than
those in S(ze : zc, t). It is somewhat surprising that
there is an overall entanglement decrease in direction x,
which we discuss in the next subsection in more detail.
This decrease could be an evidence of the purification be-
tween the two subsystems xe and xc, as these coordinates
become more uncorrelated during the physical process.

Finally, in Fig. 6, we plot the result of our approx-
imate formula Sec(e : c, t) of the physical core-electron
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entanglement using (53) with its analytic upper bound
Sbound(t) via (44). There, we also plot the function
S(xe : xc, t)+S(ye : yc, t) = 2S(xe : xc, t) and S(ze : zc, t)
for the z subsystem. We see that our approximate quan-
tification formula Sec(e : c, t) is clearly below Sbound(t),
with substantial, and slightly increasing gap. Also the
time dependence of these follow each other, which indi-
cates the actual importance of Sec(e : c, t). It seems to be
surprising that the total entanglement entropy shows a
net decrease by the end of the laser pulse, which we will
revisit in the next subsection. This is especially inter-
esting when we take into account that other important
features of the entropy Sec(e : c, t) mimic those of the
mutual entropy S(ze : zc, t). In this sense we could say
that the part of the relevant physics happens along the
polarization axis (like the correlation with the external
electric field, and the definite positions of the maxima
near the zero crossings of the laser field) but the perpen-
dicular degrees of freedom change the overall dynamics
of the entanglement from increasing to decreasing.

We will further explore the dynamics of all types of
entanglement presented so far in the following subsec-
tions, while also giving more insight into the physics, by
changing the external field that governs the process.

E. Parameter dependence of the quantum
entropies: electric field strength

In this section we discuss the dependence of the im-
portant entanglement entropies of Section III on the pa-
rameter F i.e. on the strength of the external electric
field.

In Fig. 7 we plot the spatial entropy Sz(t) for the
relevant values of F . Comparing these curves with the
ground state population loss of Fig. 2 it is easy to cor-
relate the time evolution of Sz(t) to the probability of
ionization.

Note that below the value F = 0.04, we have only a
marginal increase in Sz(t), i.e. the relative wave func-
tion stays nearly separable in z, ρ during the process.
This separability quickly breaks down with increasing F ,
which is an important information regarding the appli-
cability of the time-dependent multiconfigurational Ha-
tree approaches [50] for the simulations of strong field
processes. It is also interesting that we have not found
any specific mark of the tunneling or the over-the-barrier
ionization regimes. Between F = 0.12 and F = 0.14, the
entropy increase already slows down as a function of F ,
and one can extrapolate that the spatial nonseparability
has a saturation point near F = 0.14. We verified the
existence of this maximum value with additional com-
putations. Therefore, there is a limiting maximal value
for Sz(t) in the given time window, which already corre-
sponds also to nearly complete ionization. The Sz(t) is
not only the measure of “spatial entanglement”, but it is
also the total entropy of the z subsystem, which has con-
sequences regarding the interpretation of the directional

mutual entropies.
In Fig. 8 we plot the average mutual entropy in the di-

rectional z subsystem, S(ze : zc, t), for the relevant range
of F . It is easy to see that the correlation of this entropy
with the shape of the laser pulse becomes more clear as
we increase F . The values of the first minima decrease as
F increases, but this is reversed for the other local min-
ima. Regarding the local maxima, they all increase with
increasing F , the largest change occurring at the main
maximum (t = 175). Positions of the local maxima are
independent of F . We can observe a tunneling regime
feature: the value of this entropy returns to the baseline
at the end of the laser pulse. As the over-the-barrier ion-
ization takes over ( above F = 0.08) the final value of the
entanglement between ze and zc rises with increasing F
.

Comparing Fig. 8 and Fig. 1, it is easy to recognize
that the mean relative velocities vz(t) (or alternatively,
momenta) play a particularly important role regarding
quantum entanglement in this direction. During one half
cycle of the laser pulse, as the core and the electron are
moving apart, the entanglement of their respective coor-
dinates ze and zc increases proportionally to the magni-
tudes of their relative velocities. The value of their entan-
glement decreases when deceleration occurs, and reaches
its minimum value when the particles’ relative motion
stops. The final value of entanglement is also related to
this velocity.

The results presented in Fig. 8 are even more interest-
ing if we compare them to the exact quantum entangle-
ment entropy curves in Fig. 1. of our former 1D model
simulation [30]. Despite that the average mutual entropy
S(ze : zc, t) includes an increasing “background” (since
the composite system is always in a mixed state in the
3D model), the main features of the temporal dependence
in Fig. 8 and in Fig. 1. of [30] exhibit a very good quali-
tative agreement: the position of the local maxima coin-
cide with the zeros of the laser pulse, the main maximum
of the entropy is roughly the double of its initial value,
and the asymptotic value at the end of the simulation
time scales roughly the same way to the corresponding
maximum values. This agreement strongly supports our
opinion that the average mutual entropy S(ze : zc, t) is
a useful measure of quantum entanglement for the de-
grees of freedom along the direction of the laser polar-
ization in the 3D case. The agreement also justifies the
use of the delta-potential in the 1D simulation, because
the resulting exact core-electron quantum entanglement
quantitatively correctly describes the corresponding en-
tanglement dynamics of the 3D case.

Regarding the transverse direction x, first we note that
the time dependence of Sx(t) is very similar to that of
Sz(t) and it scales with F also in an analogous way, there-
fore we do not plot Sx(t). We plot S(xe : xc, t) in Fig.
9 in analogy to Fig. 8. This figure shows more clearly
the striking feature that was already present in Fig. 5:
the average mutual entropy in the transverse direction
decreases surprisingly strongly with increasing F in the
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over-the-barrier ionization regime. This unexpected be-
havior is of purely quantum mechanical nature, contrary
to direction z: since vx(t) = 0, there is no “classical” ex-
planation based on the Ehrenfest kinematics. However,
the positions of the local maxima S(xe : xc, t) are still
tied to the zero crossings of the laser field. There is an
importance of the tunneling regime (F = 0.0624 and be-
low), where the average mutual entropies S(xe : xc, t)
and S(ze : zc, t) have almost the same overall behavior
and show an entropy increase.

Finally, in Fig. 10, we plot the approximate core-
electron entanglement Sec(e : c, t), defined in Eq. (53).
Due to its construction, it inherits its features from
S(ze : zc, t) and S(xe : xc, t) in the following way:
if the value of F ensures pure tunnel ionization, then
Sec(e : c, t) gains a net increase by the end of the laser
pulse, otherwise the core-electron entanglement decreases
with increasing F , which is a rather surprising result.
Other important features of S(ze : zc, t) are preserved
also for Sec(e : c, t): the presence of the local maxima at
the zero crossings of the laser field, the general nature of
the correlations, and its link to the mean velocity.

F. Parameter dependence of the quantum
entropies: carrier envelope phase

In this section we investigate the effects of the carrier
envelope phase (CEP) on the process.

In the upper panel of Fig. 11 we plot the electric field
of the laser pulse for our selected CEP values, with the
strength of the electric field parameter set to F = 0.1.
For the sake of better comparability, we apply the fol-
lowing CEP dependent transformation in time: we shift
backwards the time domains in the case of nonzero CEP
values such that the zero crossings of the various laser
pulses coincide, as shown in the lower panel of Fig. 11.
We plot the time dependence of some selected quantities
in the following figures with this shift applied.

We plot the CEP dependence of the ground state pop-
ulation loss in Fig. 13 and the mean velocity vz(t) in
Fig. 12 using the above mentioned transformation. For
each CEP value, the dynamical properties of the system
stay synchronized to the local minima, maxima and zero
crossings of the laser pulses. The values of the ground
state population loss at the end of the laser pulse are
nearly unaffected by the parameter CEP. The corre-
sponding values of vz(t) are only slightly affected by the
CEP change.

The entanglement properties of the system inherit the
above CEP related features. To show this, we plot the
CEP dependence of the entropy of the “spatial entangle-
ment” in Fig. 14, the entropy of nonseparability in di-
rection z in Fig. 15, and our approximated core-electron
entanglement entropy in Fig. 16 including already the
CEP dependence in direction x. In the latter two Fig-
ures, we can see that the local maxima still coincide
with the zeros of the electric fields, independently of the

CEP values, and the CEP has barely any effect on the
final values. However, the actual values of the ioniza-
tion, the velocities and all the entropies change consider-
ably with respect to each other between subsequent half
cycles, depending on the value of the CEP parameter.
For example, in Fig. 14 the peak at t = 175 shrinks
as CEP increases and the peak value at t = 225 grows
synchronously. We have found it interesting that the lat-
ter entropy acquires its largest value near CEP = 0.75
and not CEP = 0.0, where we have the largest value of
Ez(t). Thus, although the parameter CEP changes the
sub-cycle dynamics of both these entropies considerably,
its value does not affect our main observations about the
overall time-dependent entropy dynamics.

V. SUMMARY

In this paper, we applied the theory of quantum entan-
glement and the concepts of quantum information theory
to describe the time-dependent correlation properties of
an electron and its parent ion-core under the influence of
an external laser pulse which is strong enough to liberate
the electron by tunnel or by over-the-barrier ionization.
The computation of the standard entanglement measure
i.e. the Neumann entropy of either the electron or the
core density matrix for this problem is numerically pro-
hibitive in its full dimensionality, therefore we choose to
partition the interacting system along the spatial direc-
tions parallel and perpendicular to the laser polarization
axis, denoted by z and x, respectively. These direction-
wise reduced dynamics still retain all pair correlations in
x and z. To analyze the corresponding pair correlations
between the electron and the ion-core coordinates, we
used several kinds of Neumann entropies that can be cal-
culated from the one-dimensional density matrices of the
system. Based on the concepts of quantum conditional
entropy and quantum mutual entropy, we introduced av-
erage mutual entropies between the electron’s and the
ion-core’s spatial position along the x and z directions as
suitable and useful correlation measures. We constructed
an approximate formula, Eq. (53), to quantify the to-
tal particle-particle entanglement between the electron
and the ion-core, based on the direction-wise mutual en-
tropies.

We analyzed the nature of the correlations in each di-
rection and we found that they are based on the same
fundamental features of this system. For example in di-
rection z, the ion-core entropy Sc,z(t) behaves like a cor-
relation entropy, because the ion-core density matrix is
close to that of the center of mass which has zero en-
tropy. The spatial entropy Sz(t) is concentrated in the
direction-wise electron entropy Se,z(t), which also incor-
porates a correlation part. The resulting Se,z(t)− Sz(t),
which is the negative conditional entropy of the ion-core,
becomes positive and has many features in common with
Sc,z(t). In most of the simulations, these two stay really
close to each other, which means that the state as the
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function of the ze and zc coordinates shows dominantly
quantum entanglement. The same is true with respect to
the xe and xc coordinates. This behavior is very different
from pure state entanglement, because these directional
subsystems are in mixed states.

We analyzed the correlation entropy relations in each
direction and we found that the zero crossings of the elec-
tric field almost coincide with their local maxima. These
results in direction z are also in a good agreement with
our earlier one dimensional simulations. The correlations
along the x and z directions are very similar to each other
if the process stays in the tunnel ionization regime. In
the over-the-barrier ionization regime, we found entropy
increase along z but a surprising entropy decrease in the
transverse directions which makes also the total core-
electron entanglement entropy to decrease, contrary to
what we expected.

We investigated the dependence of these proposed
measures of entanglement dynamics on the strength and
the carrier-envelope phase of the driving laser pulse. We
found many features of quantum entropies that do not
depend on these parameters, like the electron-core entan-
glement has local maxima always near the zero crossings
of the laser pulse. We found that while the intensity of
the field governs the dynamics as a whole, the carrier
envelope phase changes the sub-cycle dynamics of the
strong field ionization.

Based on our simulations, we also calculated some rel-
evant quantities that contribute to the physical picture of
strong field ionization. We found that the ground state
of the simulated relative wave function is almost separa-
ble, and it remains so if the field is weak. The loss of the
ground state population is a good measure of ionization,
and that the net effect of the ionized waves results in a
mean velocity vz(t) which is more and more similar to the
corresponding motion of a classical electron as the laser
intensity increases, apart from the nonzero final velocity.

We think that our results will be useful regarding
the interpretation of quantum measurements, especially
in connection with strong-field processes, using e.g.
COLTRIMS or other reaction microscopes [51, 52]. An
obvious but not trivial extension of our present work
could be the calculation of electron entanglement in dou-
ble ionization [53]. We also hope to inspire further devel-
opments in quantum information theory.
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Appendix A: Quantification of bipartite quantum
entanglement

1. Schmidt decomposition and entanglement

In this appendix we recall the standard theory of quan-
tum entanglement for bipartite systems emphasizing the
features specific to states described by square integrable
coordinate wave-functions of infinite dimensional Hilbert
spaces. In our problem the two parts e and c, are two
distinguishable particles, the electron and its parent ion-
core. The composite system ec is assumed to be a closed
quantum system in a pure state represented by the wave
function Ψec(re, rc, t). The two subsystems are entangled
if Ψec is not separable with respect to the coordinates of
these subsystems:

Ψec(re, rc, t) 6= Ψe(re, t)Ψc(rc, t). (A1)

It is well-known that then the result of the measurement
of subsystem e affects the outcome of measurements on
subsystem c and vice-versa. That is, performing mea-
surement on either particle changes the other particle’s
quantum state in a nonlocal manner.

To quantify the entanglement, we need the relevant
concept of density matrices. The composite system is
described by the two-particle pure state density matrix:

%ec(r
′
e, re, r

′
c, rc, t) = Ψ∗ec(r

′
e, r
′
c, t)Ψec(re, rc, t). (A2)

and the single particle density matrices are obtained by
tracing over the other particle’s degrees of freedom. The
reduced single particle core density matrix is

%c(r
′
c, rc, t) = Tre [%̂ec] =

ˆ
%ec(re, re, r

′
c, rc, t)dr

3
e (A3)

and the reduced single particle electron density matrix is

%e(r
′
e, re, t) = Trc [%̂ec] =

ˆ
%ec(r

′
e, re, rc, rc, t)dr

3
c .

(A4)
These quantities contain every quantum information
about the respective single particle properties, and they
are directly related to the entanglement information we
need. To show this, we refer to the Schmidt theorem
[54, 55], which states that there exists a unique decompo-
sition of the entangled wavefunction Ψec of the bipartite
system ec into a sum of the following form:

Ψec(re, rc, t) =
∑
k

√
λk(t)φk(rc, t)ψk(re, t). (A5)

where φk(rc, t) and ψk(re, t) are orthonormal basis func-
tions in the respective spaces. They are acquired after
the diagonalization of the single particle reduced density
matrices (A3) and (A4) as

%e(r
′
e, re, t) =

∑
k

λk(t)ψ∗k(r′e, t)ψk(re, t), (A6)
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%c(r
′
c, rc, t) =

∑
k

λk(t)φ∗k(r′c, t)φk(rc, t), (A7)

i.e the formula (A5) contains the eigenvectors φk, ψk as
the Schmidt basis functions, and the countably many
common eigenvalues λk(t) of %e and %c density matri-
ces respectively. We note that in this continuous variable
case the diagonalization of (A3) or (A4) actually involves
the solution of a homogenous Fredholm integral equation
of the second kind. In addition – contrary to discrete vari-
able systems – these density matrices are usually highly
singular, due to the trace condition Tr%e=Tr%c = 1 they
contain infinitely many zero or close to zero eigenvalues.
Therefore, it is necessary to introduce an ordering of the
eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . and then to use only
a finite number of them which are greater than an ade-
quately small threshold number ε.

The eigenvalues λk(t) allow one to quantify the entan-
glement of the particles (subsystems) e and c by intro-
ducing quantum entropies [56, 57]. Most frequently we
use here the von Neumann entropy

SN (t) = −Tr [%̂c(t) ln %̂c(t)] = −
∑
k

λk(t) lnλk(t), (A8)

and in certain cases the linear entropy

SL(t) = 1− Tr
[
%̂2c(t)

]
= 1−

∑
k

λ2k(t). (A9)

The von Neumann entropy obeys some natural require-
ments, and it also has a quantum information theoretic
appeal [58] while the linear entropy (A9) is easier to cal-
culate, since diagonalization is not necessary. However,
both of these entropies generally tend to behave the same
way in this simple bipartite configuration: if a subsys-
tem is in a pure state they assume the value 0, and they
increase as the “mixedness” of the subsystem’s state in-
creases . It is important that this quantification does not
straightforwardly generalize to the case where the com-
posite system is divided into more than two subsystems
[59].

For independent systems the total density operator is
the tensorial product of those of the subsystems and then
the Neumann entropy of the composite system is exactly
the sum of the Neumann entropies of the subsystems.
In our case, however, when by the very nature of the
problem e and c are not independent, only strong sub-
additivity holds [60], which gives an upper bound of the
composite system’s entropy as

SN (%ec) ≤ SN (%e) + SN (%c), (A10)

A useful lower bound is given by Araki-Lieb inequality
as

|SN (%e)− SN (%c)| ≤ SN (%ec). (A11)

2. Correlation types and quantum information

In general, %ec involves both classical and quantum
correlations. Then it is crucial to recognize the features

of these, and to do that, we recall their meaning first.
If a bipartite system contains only classical correlations
between the two subsystems, then it has a density matrix
of the following form:

%(cl)ec =
∑
k

wk · %(k)e ⊗ %(k)c , (A12)

where wk satisfy
∑
k wk = 1 and wk ≥ 0. We are deal-

ing with some form of quantum entanglement only if the
density matrix of the system does not satisfy (A12). We
denote the corresponding class of nonclassical density
matrices generally as %(quant)ec . A special case of this is
the entangled pure state density matrix %(pure)ec defined in
(A2) which will serve as an important analytic example
for quantum entanglement.

In the following, we recall relevant entropic quantities
of quantum information theory that suit the task of deter-
mination and quantification of entanglement. We will de-
note the composite system by EC, and its subsystems by
E and C. We also simplify the notation of the entropies
as S(EC) = SN (%ec), S(E) = SN (%e), S(C) = SN (%c).

3. Quantum conditional entropy

The quantum conditional entropy corresponding to a
subsystem can be introduced based on the conditional
density or amplitude operator [61, 62], but we consider
the following formula for the definition

S(E|C) = S(EC)− S(C) (A13)

for the quantum conditional entropy of subsystem E, and
S(C|E) is the quantum conditional entropy of subsys-
tem C. This characterizes the remaining entropy or in-
formation of E after C has been measured completely.
Both quantum conditional entropies can generally be in-
terpreted the same way as the classical ones, but they can
have negative values. They behave exactly the same way
for classical correlations as their classical counterparts:
they are nonnegative

%(cl)ec =⇒ S(E|C) ≥ 0 and S(C|E) ≥ 0. (A14)

However, when either of them is negative,

S(E|C) ≤ 0 or S(C|E) ≤ 0 =⇒ %(quant)ec (A15)

then the composite system is entangled, which leads
e.g. to a violation of the Bell inequalities. Note that
the converses of (A14) and (A15) are not true and also
S(E) − S(EC) is positive in case of quantum entangle-
ment. For example, in case of pure composite systems
we have

%(pure)ec =⇒ S(E|C) = −S(C) = −S(E). (A16)

and S(C) = S(E) is positive. Because of this, quan-
tum entanglement is sometimes called “supercorrelation”
and introduces virtual information which describes that
the measurement changes the quantum state of the other
subsystem.
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4. Quantum mutual entropy

Quantum mutual entropy is the shared entropy or
shared information between subsystems E and C. It can
be defined using a mutual density or amplitude operator
[61], but we use the definition

S(E : C) = S(E) + S(C)− S(EC). (A17)

It can be also interpreted as the decrease of entropy of
subsystem E due to the knowledge of C (and vice-versa).
Because of this, we note that the conditional entropy and
mutual entropy are related in the respective subsystems
as

S(E : C) = S(E)− S(E|C). (A18)

The quantum mutual entropy is by construction symmet-
ric and its values are always nonnegative. For classical
correlations:

%(cl)ec =⇒ S(E : C) ≤ min [S(E), S(C)] . (A19)

If the values of S(E : C) extend above this classical limit
then there is quantum entanglement between E and C:

min [S(E), S(C)] ≤ S(E : C) =⇒ %(quant)ec . (A20)

Unfortunately again, it is not true that below the classical
limit (A19) there could not be quantum effects between
the two subsystems. The upper limit of the quantum
mutual entropy is

S(E : C) ≤ 2 min [S(E), S(C)] , (A21)

which can be derived from the Araki-Lieb inequality
(A11).

It is instructive to observe that for pure state compos-
ite systems, like EPR pairs, S(E : C) is at the upper
limit:

%(pure)ec =⇒ S(E : C) = S(E) + S(C) = 2S(E). (A22)

Based on this and using the exactness of (A22), a uni-
fied entanglement or quantum nonseparability measure
can be defined which we denote as the average mutual
entropy:

S(E : C) =
1

2
S(E : C) (A23)

which is the same as (A8) in pure bipartite quantum sys-
tems. We can also use this to deduce whether we are deal-
ing with entanglement: if we are near the limit (A21), i.e.
S is close to min [S(E), S(C)], then entanglement is the
major correlation. The formulae (A17), (A13), (A23) can
be used for the analysis of the entanglement dynamics of
the directional bipartite subsystems of (A2). But we have
to be careful because (A23) is a general measure of corre-
lations and entanglement e.g. nonseparability, and does
not imply entanglement under general conditions.
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Figure 1. Time-dependence of the mean velocity of the rela-
tive wave function vz(t), defined in Eq. (15), for the indicated
values of the parameter F , with CEP = 0. For F = 0.12, this
velocity somewhat correlates with the quiver motion of the
classical free electron moving under the influence of the same
uniform dipole electric field (58). The vertical dashed lines
denote the zero crossings of the electric field. (They have the
same meaning on all of the figures.)
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Figure 2. Time-dependence of the ground state population
loss f(t), defined in Eq. (16), for the indicated values of
the parameter F , with CEP = 0. The f(t) is linked to the
probability of ionization. For pure tunnel ionization i.e. for
F < 0.0624, the ionization is very small. For higher values of
F , the f(t) rises suddenly around the peaks of the laser pulse.
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Figure 3. Comparison of the time-dependence of various lin-
ear entropies in direction z, based on our reduced density
matrix formalism, using F = 0.1, CEP = 0. Although the
linear entropies of SL,z(t), SL,c,z(t), SL,e,z(t) compare fairly
well to the respective Neumann entropies in Fig. 4, the nega-
tive linear conditional entropy SL,e,z(t)−SL,z(t) gives a false
prediction.
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Figure 4. Comparison of the time-dependence of various Neu-
mann entropies in direction z, based on our reduced density
matrix formalism, using F = 0.1, CEP = 0. The synchronous
changes in Sc,z(t), in Se,z(t) − Sz(t), and in S(ze : zc, t) sig-
nal that they are related to a common source of correlation,
which is primarily the quantum entanglement between ze and
zc, as evidenced by the high value of the negative conditional
entropy Se,z(t)− Sz(t) .
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Figure 5. The time evolution of the various Neumann en-
tropies based on the reduced density matrices in direction x,
using the parameters F = 0.1, CEP = 0. We can see that the
S(xe : xc, t) shares time-dependent features with S(ze : zc, t),
for example, its maxima are near the zero crossings of the laser
pulse. The major correlation between xe and xc is quantum
entanglement.

Sbound SecHe:cL 2SHxe:xcL SHze:zcL

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1.0

t @a.uD

N
e
u
m

a
n
n

e
n
tr

o
p
ie

s

Figure 6. The time evolution of our electron-core entangle-
ment entropy Sec(e : c, t) and the upper bound of the analytic
entanglement entropy Sbound(t), along with time evolution of
the directional entropies 2S(xe : xc, t) and S(ze : zc, t) with
parameters F = 0.1, CEP = 0. The time dependence of
Sbound(t) and Sec(e : c, t) follow each other with substantial,
and slightly increasing gap which indicates the actual impor-
tance of these curves. The total entanglement entropy reaches
a net decrease by the end of the laser pulse. Important fea-
tures of Sec(e : c, t) are shared with S(ze : zc, t) (like the
correlation with the external electric field, and the definite
positions of the maxima near the zero crossings of the laser
field) which suggests that the relevant physics happens along
the polarization axis.
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Figure 7. The time evolution of the Neumann entropy Sz(t)
for the indicated values of the parameter F , with CEP = 0.
Below the value F = 0.04, we have only a negligible increase
in Sz(t), i.e. the relative wave function stays nearly separable
in z, ρ during the process. This separability quickly breaks
down with increasing F . The fast rises of Sz(t) are related to
the sudden changes of ionization probability, see Fig. 2.
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Figure 8. The time evolution of the mutual entropy S(ze :
zc, t) for the indicated values of the parameter F , with CEP =
0. By comparing to Fig. 1, we can easily recognize that
the mean relative velocities vz(t) are tied to the quantum
entanglement in direction z. These curves are very similar to
the exact quantum entanglement entropy curves in Fig. 1.
of our former 1D model simulation [30]. The local maxima
increase with increasing F , the largest change occurring at
the main maximum (t = 175). Positions of the local maxima
almost coincide with the zero crossings of the laser’s electric
field.
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Figure 9. The time evolution of the mutual entropy S(xe :
xc, t) for the indicated values of the parameter F , with CEP =
0. This figure shows more clearly the striking feature that was
already present in Fig. 5: the average mutual entropy in the
direction x decreases surprisingly strongly with increasing F
in the over-the-barrier ionization regime.
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Figure 10. The time evolution of the approximate core-
electron entropy Sec(e : c, t) for the indicated values of the pa-
rameter F , with CEP = 0. Due to its construction, it inherits
its features from S(ze : zc, t) and S(xe : xc, t). Surprisingly,
the entropy decrease of the transverse directions dominate
the entropy increase in direction z, therefore this approxi-
mate core-electron entanglement decreases with increasing F
in the over-the-barrier ionization regime.
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Figure 11. Plots of the laser pulses’ electric fields Ez(t) versus
time with four selected values of the parameter CEP, where
the thick blue curves indicate the case of CEP =0. The verti-
cal axes range from −F to F and represent the strength of the
electric field. Plots in the upper panel are according to the
formula (58) then we applied a CEP dependent shift in time
to make the zero crossings coincide (lower panel). We plot the
time-dependence of some selected quantities in Figures 12 to
16 with this shift applied.
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Figure 12. Plots of the mean velocity vz(t) of the relative
wave function versus time for the indicated CEP parameters,
with F = 0.1.
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Figure 13. Plots of the ground state population loss of the
relative wave function versus time for the indicated CEP pa-
rameters, with F = 0.1.
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Figure 14. Plots of the Neumann entropy Sz(t) versus time
for the indicated CEP parameters, with F = 0.1.
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Figure 15. The plot of the mutual entropy S(ze : zc, t) for
the indicated CEP parameters, with F = 0.1. Note that the
peak at t = 175 shrinks as the CEP increases while the peak
at t = 225 increases.
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Figure 16. The plot of the electron-core entropy Sec(e : c, t)
for the indicated CEP parameters, with F = 0.1.
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