715 research outputs found

    Constraints on the composition of Jupiter's stratospheric aerosols from ultraviolet photometry

    Get PDF
    The absolute reflectivity of Jupiter has been obtained in 50 A-wide regions centering on 0.221, 0.233, 0.252, and 0.330 microns from three series of IUE satellite spectra taken in November 1979. The data indicate a strong decrease in reflectivity for latitudes greater than about 30 deg, in keeping with Voyager measurements. An additional 24 spectra were also obtained in a west-east series along the equator, as well as near 40 deg N latitude. These data favor models in which the haze particles have effective radii within a factor of 2 of 0.2 microns. Near the equator, the haze aerosols produce much less absorption than near 40 deg N; the aerosol distributions and optical properties derived are noted to be more dependent on the assumed location and reflectivity of the top of the tropospheric cloud

    Spectrophotometry of planets, asteroids and satellites from the international ultraviolet explorer satellite

    Get PDF
    A total of 14 8 hour I.U.E. observing sessions resulted in 39 spectra of 11 asteroids and 9 solar type stars as well as 57 spectra at various locations on the disk of Jupiter. The Jupiter observations include a total of 5 center to limb series of spectra at various latitudes and a North South series along the central meridian. In the range from 2000-3000 A, the planet shows a striking decrease in brightness at latitudes greater than about 30 degrees, and exhibits limb brightening at low latitudes and limb darkening at high latitudes. Preliminary results indicate that about 6 km-amagats of clean hydrogen are required above a haze of absorbing aerosols to reproduce the limb brightening observed at 2500 A in the equatorial regions. At higher latitudes, the aerosols extend to even higher levels of the atmosphere. Comparison of the Jovian data with detailed model calculations and the analyses of the asteroid spectra are still in progress with other support

    Kondo effect in quantum dots coupled to ferromagnetic leads

    Full text link
    We study the Kondo effect in a quantum dot which is coupled to ferromagnetic leads and analyse its properties as a function of the spin polarization of the leads. Based on a scaling approach we predict that for parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is reached at a finite value of the magnetic field. Using an equation-of-motion technique we study nonlinear transport through the dot. For parallel alignment the zero-bias anomaly may be split even in the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude and position.Comment: 5 pages, 2 figure

    Worldwide tests of generic attractants, a promising tool for early detection of non-native cerambycid species

    Get PDF
    A large proportion of the insects which have invaded new regions and countries are emerging species, being found for the first time outside their native range. Being able to detect such species upon arrival at ports of entry before they establish in non-native countries is an urgent challenge. The deployment of traps baited with broad-spectrum semiochemical lures at ports-of-entry and other high-risk sites could be one such early detection tool. Rapid progress in the identification of semiochemicals for cerambycid beetles during the last 15 years has revealed that aggregation-sex pheromones and sex pheromones are often conserved at global levels for genera, tribes or subfamilies of the Cerambycidae. This possibly allows the development of generic attractants which attract multiple species simultaneously, especially when such pheromones are combined into blends. Here, we present the results of a worldwide field trial programme conducted during 2018-2021, using traps baited with a standardised 8-pheromone blend, usually complemented with plant volatiles. A total of 1308 traps were deployed at 302 sites covering simultaneously or sequentially 13 European countries, 10 Chinese provinces and some regions of the USA, Canada, Australia, Russia (Siberia) and the Caribbean (Martinique). We intended to test the following hypotheses: 1) if a species is regularly trapped in significant numbers by the blend on a continent, it increases the probability that it can be detected when it arrives in other countries/continents and 2) if the blend exerts an effective, generic attraction to multiple species, it is likely that previously unknown and unexpected species can be captured due to the high degree of conservation of pheromone structures within related taxa. A total of 78,321 longhorned beetles were trapped, representing 376 species from eight subfamilies, with 84 species captured in numbers greater than 50 individuals. Captures comprised 60 tribes, with 10 tribes including more than nine species trapped on different continents. Some invasive species were captured in both the native and invaded continents. This demonstrates the potential of multipheromone lures as effective tools for the detection of 'unexpected' cerambycid invaders, accidentally translocated outside their native ranges. Adding new pheromones with analogous well-conserved motifs is discussed, as well as the limitations of using such blends, especially for some cerambycid taxa which may be more attracted by the trap colour or other characteristics rather than to the chemical blend.O

    Spin effects in single-electron tunneling in magnetic junctions

    Full text link
    Spin dependent single electron tunneling in ferromagnetic double junctions is analysed theoretically in the limit of sequential tunneling. The influence of discrete energy spectrum of the central electrode (island)on the spin accumulation, spin fluctuations and tunnel magnetoresistance is analysed numerically in the case of a nonmagnetic island. It is shown that spin fluctuations are significant in magnetic as well as in nonmagnetic junctions.Comment: 14 pages, 3 eps-figures include

    Frequency-Dependent Current Noise through Quantum-Dot Spin Valves

    Full text link
    We study frequency-dependent current noise through a single-level quantum dot connected to ferromagnetic leads with non-collinear magnetization. We propose to use the frequency-dependent Fano factor as a tool to detect single-spin dynamics in the quantum dot. Spin precession due to an external magnetic and/or a many-body exchange field affects the Fano factor of the system in two ways. First, the tendency towards spin-selective bunching of the transmitted electrons is suppressed, which gives rise to a reduction of the low-frequency noise. Second, the noise spectrum displays a resonance at the Larmor frequency, whose lineshape depends on the relative angle of the leads' magnetizations.Comment: 12 pages, 15 figure

    Kondo effect near the Van Hove singularity in biased bilayer graphene

    Full text link
    Magnetic impurity adsorbed on one of the carbon planes of a bilayer graphene is studied. The formation of the many-body SU(2) and SU(4) resonances close to the bandgap is analyzed within the mean field Kotliar-Ruckenstein slave boson approach. Impact of enhanced hybridization and magnetic instability of bilayer doped near the Van Hove singularity on the screening of magnetic moment is discussed.Comment: 10 pages, 8 figure

    Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study

    Full text link
    We systematically study the influence of ferromagnetic leads on the Kondo resonance in a quantum dot tuned to the local moment regime. We employ Wilson's numerical renormalization group method, extended to handle leads with a spin asymmetric density of states, to identify the effects of (i) a finite spin polarization in the leads (at the Fermi-surface), (ii) a Stoner splitting in the bands (governed by the band edges) and (iii) an arbitrary shape of the leads density of states. For a generic lead density of states the quantum dot favors being occupied by a particular spin-species due to exchange interaction with ferromagnetic leads leading to a suppression and splitting of the Kondo resonance. The application of a magnetic field can compensate this asymmetry restoring the Kondo effect. We study both the gate-voltage dependence (for a fixed band structure in the leads) and the spin polarization dependence (for fixed gate voltage) of this compensation field for various types of bands. Interestingly, we find that the full recovery of the Kondo resonance of a quantum dot in presence of leads with an energy dependent density of states is not only possible by an appropriately tuned external magnetic field but also via an appropriately tuned gate voltage. For flat bands simple formulas for the splitting of the local level as a function of the spin polarization and gate voltage are given.Comment: 18 pages, 18 figures, accepted for publication in PR

    Residual Kondo effect in quantum dot coupled to half-metallic ferromagnets

    Full text link
    We study the Kondo effect in a quantum dot coupled to half-metallic ferromagnetic electrodes in the regime of strong on-dot correlations. Using the equation of motion technique for nonequilibrium Green functions in the slave boson representation we show that the Kondo effect is not completely suppressed for anti-parallel leads magnetization. In the parallel configuration there is no Kondo effect but there is an effect associated with elastic cotunneling which in turn leads to similar behavior of the local (on-dot) density of states (LDOS) as the usual Kondo effect. Namely, the LDOS shows the temperature dependent resonance at the Fermi energy which splits with the bias voltage and the magnetic field. Moreover, unlike for non-magnetic or not fully polarized ferromagnetic leads the only minority spin electrons can form such resonance in the density of states. However, this resonance cannot be observed directly in the transport measurements and we give some clues how to identify the effect in such systems.Comment: 15 pages, 8 figures, accepted for publication in J. Phys.: Condens. Mat
    corecore