19,487 research outputs found

    Chaos and dynamical trends in barred galaxies: bridging the gap between N-body simulations and time-dependent analytical models

    Get PDF
    Self-consistent N-body simulations are efficient tools to study galactic dynamics. However, using them to study individual trajectories (or ensembles) in detail can be challenging. Such orbital studies are important to shed light on global phase space properties, which are the underlying cause of observed structures. The potentials needed to describe self-consistent models are time-dependent. Here, we aim to investigate dynamical properties (regular/chaotic motion) of a non-autonomous galactic system, whose time-dependent potential adequately mimics certain realistic trends arising from N-body barred galaxy simulations. We construct a fully time-dependent analytical potential, modeling the gravitational potentials of disc, bar and dark matter halo, whose time-dependent parameters are derived from a simulation. We study the dynamical stability of its reduced time-independent 2-degrees of freedom model, charting the different islands of stability associated with certain orbital morphologies and detecting the chaotic and regular regions. In the full 3-degrees of freedom time-dependent case, we show representative trajectories experiencing typical dynamical behaviours, i.e., interplay between regular and chaotic motion for different epochs. Finally, we study its underlying global dynamical transitions, estimating fractions of (un)stable motion of an ensemble of initial conditions taken from the simulation. For such an ensemble, the fraction of regular motion increases with time.Comment: 17 pages, 11 figures (revised version, accepted for publication in Mon. Not. R. Astron. Soc.

    Single and Central Diffractive Higgs Production at the LHC

    Full text link
    The single and central diffractive production of the Standard Model Higgs boson is computed using the diffractive factorization formalism, taking into account a parametrization for the Pomeron structure function provided by the H1 Collaboration. We compute the cross sections at NLO accuracy for the gluon fusion process, since it is the leading mechanism for the Higgs boson production. The gap survival probability is also introduced to include the rescattering corrections due to spectator particles present in the interaction. The diffractive ratios are predicted for proton-proton collisions at the LHC, since the beam luminosity is favorable to the Higgs boson detection. These results provide updated estimations for the fraction of single and central diffractive events in the LHC kinematical regime.Comment: To appear in the proceedings of Diffraction 2010: International Workshop on Diffraction in High Energy Physics, Otranto, Italy, 10-15 Sep 201

    Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we investigate the coherent photoproduction of psi(1S), psi(2S) and Upsilon (1S) states in the proton-nucleus collisions in the LHC energies. Predictions for the rapidity distributions are presented using the color dipole formalism and including saturation effects that are expected to be relevant at high energies. Calculations are done at the energy 5.02 TeV and also for the next LHC run at 8.8 TeV in proton-lead mode. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 05 pages, 5 figures. Version to be published in Phys. Rev.

    Diffractive dissociation in proton-nucleus collisions at collider energies

    Full text link
    The cross section for the nuclear diffractive dissociation in proton-lead collisions at the LHC is estimated. Based on the current theoretical uncertainties for the single (target) diffactive cross section in hadron-hadron reactions one obtains sigma_SD(5.02 TeV) = 19.67 \pm 5.41 mb and sigma_SD(8.8 TeV) = 18.76 \pm 5.77 mb, respectively. The invariant mass M_X for the reaction pPb -> pX is also analyzed. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 04 pages, 2 figures. Final version to be published in European Physical Journal A - "Hadrons and Nuclei
    • …
    corecore