384 research outputs found

    Raised tone reveals ATP as a sympathetic neurotransmitter in the porcine mesenteric arterial bed

    Get PDF
    The relative importance of ATP as a functional sympathetic neurotransmitter in blood vessels has been shown to be increased when the level of preexisting vascular tone or pressure is increased, in studies carried out in rat mesenteric arteries. The aim of the present study was to determine whether tone influences the involvement of ATP as a sympathetic cotransmitter with noradrenaline in another species. We used the porcine perfused mesenteric arterial bed and porcine mesenteric large, medium and small arteries mounted for isometric tension recording, because purinergic cotransmission can vary depending on the size of the blood vessel. In the perfused mesenteric bed at basal tone, sympathetic neurogenic vasocontractile responses were abolished by prazosin, an α1- adrenoceptor antagonist, but there was no significant effect of α,β-methylene ATP, a P2X receptor-desensitizing agent. Submaximal precontraction of the mesenteric arterial bed with U46619, a thromboxane A2 mimetic, augmented the sympathetic neurogenic vasocontractile responses; under these conditions, both α,β-methylene ATP and prazosin attenuated the neurogenic responses. In the mesenteric large, medium and small arteries, prazosin attenuated the sympathetic neurogenic contractile responses under conditions of both basal and U46619-raised tone. α,β-Methylene ATP was effective in all of these arteries only under conditions of U46619- induced tone, causing a similar inhibition in all arteries, but had no significant effect on sympathetic neurogenic contractions at basal tone. These data show thatATP is a cotransmitter with noradrenaline in porcine mesenteric arteries; the purinergic component was revealed under conditions of partial precontraction, which is more relevant to physiological conditions

    Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction.</p> <p>Methods</p> <p>Diabetes (DM) was induced in rats by streptozotocin (STZ). Daily curcumin oral feeding was started six weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-βII) were examined by hydroethidine and immunofluorescence, respectively.</p> <p>Results</p> <p>The dilatory response to acetylcholine (ACh) significantly decreased in DM arterioles as compared to control arterioles. There was no difference among groups when sodium nitroprusside (SNP) was used. ACh responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively) of curcumin supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular superoxide anion (O<sub>2</sub><sup>●-</sup>) production. O<sub>2</sub><sup>●- </sup>production was markedly increased in DM arterioles, but it was significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of curcumin, diabetes-induced vascular PKC-βII expression was diminished.</p> <p>Conclusion</p> <p>Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition.</p

    Pharmacological treatment of delayed cerebral ischemia and vasospasm in subarachnoid hemorrhage

    Get PDF
    Subarachnoid hemorrhage after the rupture of a cerebral aneurysm is the cause of 6% to 8% of all cerebrovascular accidents involving 10 of 100,000 people each year. Despite effective treatment of the aneurysm, delayed cerebral ischemia (DCI) is observed in 30% of patients, with a peak on the tenth day, resulting in significant infirmity and mortality. Cerebral vasospasm occurs in more than half of all patients and is recognized as the main cause of delayed cerebral ischemia after subarachnoid hemorrhage. Its treatment comprises hemodynamic management and endovascular procedures. To date, the only drug shown to be efficacious on both the incidence of vasospasm and poor outcome is nimodipine. Given its modest effects, new pharmacological treatments are being developed to prevent and treat DCI. We review the different drugs currently being tested

    The endothelial glycocalyx: composition, functions, and visualization

    Get PDF
    This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk
    corecore