729 research outputs found
Warped Gaussian Processes Occupancy Mapping with Uncertain Inputs
© 2017 IEEE. In this paper, we study extensions to the Gaussian processes (GPs) continuous occupancy mapping problem. There are two classes of occupancy mapping problems that we particularly investigate. The first problem is related to mapping under pose uncertainty and how to propagate pose estimation uncertainty into the map inference. We develop expected kernel and expected submap notions to deal with uncertain inputs. In the second problem, we account for the complication of the robot's perception noise using warped Gaussian processes (WGPs). This approach allows for non-Gaussian noise in the observation space and captures the possible nonlinearity in that space better than standard GPs. The developed techniques can be applied separately or concurrently to a standard GP occupancy mapping problem. According to our experimental results, although taking into account pose uncertainty leads, as expected, to more uncertain maps, by modeling the nonlinearities present in the observation space WGPs improve the map quality
Exploration in Information Distribution Maps
In this paper, a novel solution for autonomous robotic exploration is proposed. The distribution of information in an unknown environment is modeled as an unsteady diffusion process, which can be an appropriate mathematical formulation and analogy for expanding, time-varying, and dynamic environments. This information distribution map is the solution of the diffusion process partial differential equation, and is regressed from sensor data as a Gaussian Process. Optimization of the process parameters leads to an optimal frontier map which describes regions of interest for further exploration. Since the presented approach considers a continuous model of the environment, it can be used to plan smooth exploration paths exploiting the structural dependencies of the environment whilst handling sparse sensors measurements. The performance of the proposed approach is evaluated through simulation results in the well-known Freiburg and Cave maps
A Directional Crack Damage Memory Effect in Sandstone Under True Triaxial Loading
We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. This work was partly funded by NERC awards NE/N002938/1, NE/N003063/1, and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in an SI file; any additional data may be obtained from JB (email: [email protected]).Peer reviewedPublisher PD
Fast Distributed Approximation for Max-Cut
Finding a maximum cut is a fundamental task in many computational settings.
Surprisingly, it has been insufficiently studied in the classic distributed
settings, where vertices communicate by synchronously sending messages to their
neighbors according to the underlying graph, known as the or
models. We amend this by obtaining almost optimal
algorithms for Max-Cut on a wide class of graphs in these models. In
particular, for any , we develop randomized approximation
algorithms achieving a ratio of to the optimum for Max-Cut on
bipartite graphs in the model, and on general graphs in the
model.
We further present efficient deterministic algorithms, including a
-approximation for Max-Dicut in our models, thus improving the best known
(randomized) ratio of . Our algorithms make non-trivial use of the greedy
approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing
an unconstrained (non-monotone) submodular function, which may be of
independent interest
Dissipative Abelian Sandpiles and Random Walks
We show that the dissipative Abelian sandpile on a graph L can be related to
a random walk on a graph which consists of L extended with a trapping site.
From this relation it can be shown, using exact results and a scaling
assumption, that the dissipative sandpiles' correlation length exponent \nu
always equals 1/d_w, where d_w is the fractal dimension of the random walker.
This leads to a new understanding of the known results that \nu=1/2 on any
Euclidean lattice. Our result is however more general and as an example we also
present exact data for finite Sierpinski gaskets which fully confirm our
predictions.Comment: 10 pages, 1 figur
A continuous source of translationally cold dipolar molecules
The Stark interaction of polar molecules with an inhomogeneous electric field
is exploited to select slow molecules from a room-temperature reservoir and
guide them into an ultrahigh vacuum chamber. A linear electrostatic quadrupole
with a curved section selects molecules with small transverse and longitudinal
velocities. The source is tested with formaldehyde (H2CO) and deuterated
ammonia (ND3). With H2CO a continuous flux is measured of approximately 10^9/s
and a longitudinal temperature of a few K. The data are compared with the
result of a Monte Carlo simulation.Comment: 4 pages, 4 figures v2: small changes in the abstract, text and
references. Figures 1 & 2 regenerated to prevent errors in the pd
High Alpha Technology Program (HATP) ground test to flight comparisons
This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans
The generalized second law for the interacting generalized Chaplygin gas model
We investigate the validity of the generalized second law (GSL) of
gravitational thermodynamics in a non-flat FRW universe containing the
interacting generalized Chaplygin gas with the baryonic matter. The dynamical
apparent horizon is assumed to be the boundary of the universe. We show that
for the interacting generalized Chaplygin gas as a unified candidate for dark
matter (DM) and dark energy (DE), the equation of state parameter can cross the
phantom divide. We also present that for the selected model under thermal
equilibrium with the Hawking radiation, the GSL is always satisfied throughout
the history of the universe for any spatial curvature, independently of the
equation of state of the interacting generalized Chaplygin gas model.Comment: 8 page
Interacting polytropic gas model of phantom dark energy in non-flat universe
By introducing the polytropic gas model of interacting dark energy, we obtain
the equation of state for the polytropic gas energy density in a non-flat
universe. We show that for even polytropic index by choosing
, one can obtain , which
corresponds to a universe dominated by phantom dark energy.Comment: 7 page
- …