222 research outputs found

    Higgs boson masses in supersymmetric theories

    Get PDF
    The Higgs boson mass problem is considered in the next to minimal supersymmetric standard model. The Higgs potential and the renormalization group equations for the gauge, Yukawa and scalar coupling constants are analyzed. The restrictions for the Higgs boson masses are found for the cases of presence and absence of spontaneous CP- violation

    Complete gluon bremsstrahlung corrections to the process b -> s l+ l-

    Full text link
    In a recent paper, we presented the calculation of the order (alpha_s) virtual corrections to b->s l+ l- and of those bremsstrahlung terms which are needed to cancel the infrared divergences. In the present paper we work out the remaining order(alpha_s) bremsstrahlung corrections to b->s l+ l- which do not suffer from infrared and collinear singularities. These new contributions turn out to be small numerically. In addition, we also investigate the impact of the definition of the charm quark mass on the numerical results.Comment: 20 pages including 11 postscript figure

    Complete NNLO QCD Analysis of B -> X_s l^+ l^- and Higher Order Electroweak Effects

    Full text link
    We complete the next-to-next-to-leading order QCD calculation of the branching ratio for B -> X_s l^+ l^- including recent results for the three-loop anomalous dimension matrix and two-loop matrix elements. These new contributions modify the branching ratio in the low-q^2 region, BR_ll, by about +1% and -4%, respectively. We furthermore discuss the appropriate normalization of the electromagnetic coupling alpha and calculate the dominant higher order electroweak effects, showing that, due to accidental cancellations, they change BR_ll by only -1.5% if alpha(mu) is normalized at mu = O(m_b), while they shift it by about -8.5% if one uses a high scale normalization mu = O(M_W). The position of the zero of the forward-backward asymmetry, q_0^2, is changed by around +2%. After introducing a few additional improvements in order to reduce the theoretical error, we perform a comprehensive study of the uncertainty. We obtain BR_ll(1 GeV^2 <= q^2 <= 6 GeV^2) = (1.57 +- 0.16) x 10^-6 and q_0^2 = (3.76 +- 0.33) GeV^2 and note that the part of the uncertainty due to the b-quark mass can be easily reduced.Comment: 26 pages, 7 figures; v5: corrected normalisation in Eq. (5), numerical results unchange

    Photosensitive bismuth ions in lead tungstate

    Full text link
    Electron paramagnetic resonance (EPR) signals of Bi2+ ions have been detected in the EPR spectrum of manganese-, bismuth-, and tin-doped PbWO4 single-crystals irradiated by xenon and mercury lamps at 100 K. The parameters of the Zeeman, hyperfine, and superhyperfine interactions and the localization of Bi2+ ions have been determined. © 2013 Pleiades Publishing, Ltd

    Paramagnetic defects in manganese-doped lead tungstate

    Full text link
    In manganese-doped PbWO4 crystals, low-intensity signals of triclinic clusters Mn4+-VO and Fe3+-VPb have been revealed in addition to signals of Mn2+ tetragonal centers. The Mn4+-VO cluster is formed by a Mn4+ ion in the W6+ position, which is associated with a vacancy of the nearest neighbor O2-ion, and the Fe3+-VPb cluster consists of a Fe3+ ion substituting for Pb2+ with a local compensation of by a lead vacancy. It has been shown that, in PbWO4: Mn, there is also a small amount of Mn4+ tetragonal centers located in the Pb2+ position with a nonlocal compensation of an excess charge. © 2013 Pleiades Publishing, Ltd

    Direct CP-asymmetry in Inclusive Rare B-decays in 2HDM

    Get PDF
    The direct CP-asymmetry in the inclusive BXdγB \to X_d \gamma and BXde+eB \to X_d e^+ e^ - decays is investigated in the two-Higgs doublet extension of the Standard Model (2HDM). The investigation is performed in the lowest non-vanishing order of the perturbation theory using the existing restrictions on the 2HDM parameters space. It is shown that the direct CP-asymmetry in the BXdγB \to X_d \gamma decay can deviate significantly from the Standard Model predictions. In the presence of only one source of CP-violation (the CKM matrix weak phase) aCP(BXdγ)a_{CP}(B \to X_d \gamma) can have the sign opposite to that in the SM. The new source of CP-violation can make aCP(BXdγ)|a_{CP}(B \to X_d \gamma)| arbitrary small (unlike the SM case) and hence unmeasurable. Quantitatively, the obtained results suffer from the uncertainty of the choice of renormalization scale. As for the BXde+eB \to X_d e^+ e^ - rate asymmetry, its renormalization scale dependence in the lowest non-vanishing order does not allow to conclude if this quantity is efficient for testing New Physics beyond the Standard Model.Comment: 16 pages including 2 figure

    bsγb \to s \gamma decays in the Left-Right Symmetric Model

    Full text link
    We consider bsγb \to s \gamma decays in the Left-Right Symmetric Model. Values of observables sensitive to chiral structure such as the Λ\Lambda polarization in the ΛbΛγ\Lambda_b \to \Lambda \gamma decays and the mixing-induced CP asymmetries in the Bd,sM0γB_{d,s} \to M^0 \gamma decays can deviate in the LRSM significantly from the SM values. The combined analysis of PΛP_\Lambda and ACPA_{CP} as well as BR(bsγ){\cal BR}(b \to s \gamma) can be used to determine the model parameters.Comment: 16 pages with 7 figures, Version to be published in PR

    More Model-Independent Analysis of b->s Processes

    Full text link
    We study model-independently the implications of non-standard scalar and pseudoscalar interactions for the decays b ->s gamma, b -> s g, b -> s l^+l^- (l=e,mu) and B_s -> mu^+ mu^-. We find sizeable renormalization effects from scalar and pseudoscalar four-quark operators in the radiative decays and at O(alpha_s) in hadronic b decays. Constraints on the Wilson coefficients of an extended operator basis are worked out. Further, the ratios R_H = BR(B -> H mu^+ mu^-)/BR(B -> H e^+ e^-), for H=K^(*), X_s, and their correlations with B_s -> mu^+ mu^- decay are investigated. We show that the Standard Model prediction for these ratios defined with the same cut on the dilepton mass for electron and muon modes, R_H= 1 + O(m^2_mu/m^2_b), has a much smaller theoretical uncertainty (<1%) than the one for the individual branching fractions. The present experimental limit R_K < 1.2 puts constraints on scalar and pseudoscalar couplings, which are similar to the ones from current data on BR(B_s -> mu^+ mu^-). We find that new physics corrections to R_{K*} and R_{X_s} can reach 13% and 10%, respectively.Comment: 28 pages, 6 figures; Table 1 updated, two refs added (to appear in PRD

    Calculation of two-loop virtual corrections to b --> s l+ l- in the standard model

    Get PDF
    We present in detail the calculation of the virtual O(alpha_s) corrections to the inclusive semi-leptonic rare decay b --> s l+ l-. We also include those O(alpha_s) bremsstrahlung contributions which cancel the infrared and mass singularities showing up in the virtual corrections. In order to avoid large resonant contributions, we restrict the invariant mass squared s of the lepton pair to the range 0.05 < s/mb^2 < 0.25. The analytic results are represented as expansions in the small parameters s/mb^2, z = mc^2/mb^2 and s/(4 mc^2). The new contributions drastically reduce the renormalization scale dependence of the decay spectrum. For the corresponding branching ratio (restricted to the above s-range) the renormalization scale uncertainty gets reduced from +/-13% to +/-6.5%.Comment: 41 pages including 9 postscript figures; in version 2 some typos and inconsistent notation correcte

    NNLL corrections to the angular distribution and to the forward-backward asymmetries in b -> X_s l+ l-

    Get PDF
    We present NNLL results for the double differential decay width dGamma(b -> X_s l+ l-)/(dsh dcos(theta)), where theta is the angle between the momenta of the b-quark and the l+, measured in the rest-frame of the lepton pair. From these results we also derive NNLL results for the lepton forward-backward asymmetries. Genuinely new calculations for the combined virtual- and gluon bremsstrahlung corrections associated with the operators O_7, O_9 and O_10 are necessary. We find that the NNLL corrections drastically reduce the renormalization scale dependence of the forward-backward asymmetries. In particular, sh_0, the position at which the forward-backward asymmetries vanish, is essentially free of uncertainties due to the renormalization scale at NNLL precision. We find sh_0(NNLL)=0.162 +/- 0.005, where the error is dominated by the uncertainty in (m_c/m_b). This is to be compared with sh_0(NLL)=0.144 +/- 0.020, where the error is dominated by uncertainties due to the choice of mu.Comment: 26 pages including 11 postscript figure
    corecore