60 research outputs found

    Two Problems on Narayana Numbers And Repeated Digit Numbers

    Full text link
    In this paper, we find all repdigits which can be expressed as the product of a Narayana, and a product of two repdigits is Narayana

    Short RNA Guides Cleavage by Eukaryotic RNase III

    Get PDF
    In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response

    Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits

    Get PDF
    In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of the cytoplasmic translation initiation factor eIF5b/Fun12. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associate with Fun12 and form 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP-hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used

    Loss of the yeast SR protein Npl3 alters gene expression due to transcription readthrough

    Get PDF
    Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3' end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3' end formation. Tiling arrays and RNAPII mapping data revealed 3' extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression

    Exploring the antimicrobial, antiviral, antioxidant, and antitumor potentials of marine Streptomyces tunisiensis W4MT573222 pigment isolated from Abu-Qir sediments, Egypt

    No full text
    Abstract Due to the therapeutic importance of microbial pigments, these pigments are receiving the attention of researchers. In this present study 60 isolates were isolated from sediments of Abu-Qir coast of the Mediterranean sea, Alexandria, Egypt, out of which 12 were considered as pigmented actinomycetes. Streptomyces sp. W4 was characterized by small round green pigmented colonies when grown on starch-casein agar medium. The green pigment was extracted using a mixture of acetone-methanol (7:3 v/v). The antimicrobial, antioxidant, antiviral, and anticancer activities of the green pigment produced by Streptomyces sp.W4 were investigated. The pigment was characterized using FTIR, Raman spectroscopy, EDX and GC–MS. The results revealed that the pigment has antibacterial and antifungal activity and also showed inhibition of HAV 78% but its antiviral activity against the Adenovirus was weak. The results proved the safety of the pigment toward normal cells and anticancer activity against three different cancer cell lines HepG-2 (liver cancer cell line), A549 (lung cancer cell line), and PAN1 (pancreas cancer cell line). The pigment was combined with 9 antibiotics and then tested against the Gram-negative bacterium Enterococcus faecalis using disc diffusion bioassay. LEV showed an antagonistic effect, while CXM and CIP showed a synergistic effect
    corecore