5,923 research outputs found

    Isotropic covariance functions on graphs and their edges

    Full text link
    We develop parametric classes of covariance functions on linear networks and their extension to graphs with Euclidean edges, i.e., graphs with edges viewed as line segments or more general sets with a coordinate system allowing us to consider points on the graph which are vertices or points on an edge. Our covariance functions are defined on the vertices and edge points of these graphs and are isotropic in the sense that they depend only on the geodesic distance or on a new metric called the resistance metric (which extends the classical resistance metric developed in electrical network theory on the vertices of a graph to the continuum of edge points). We discuss the advantages of using the resistance metric in comparison with the geodesic metric as well as the restrictions these metrics impose on the investigated covariance functions. In particular, many of the commonly used isotropic covariance functions in the spatial statistics literature (the power exponential, Mat{\'e}rn, generalized Cauchy, and Dagum classes) are shown to be valid with respect to the resistance metric for any graph with Euclidean edges, whilst they are only valid with respect to the geodesic metric in more special cases.Comment: 6 figures, 1 tabl

    Energy and angular momentum of general 4-dimensional stationary axi-symmetric spacetime in teleparallel geometry

    Full text link
    We derive an exact general axi-symmetric solution of the coupled gravitational and electromagnetic fields in the tetrad theory of gravitation. The solution is characterized by four parameters MM (mass), QQ (charge), aa (rotation) and LL (NUT). We then, calculate the total exterior energy using the energy-momentum complex given by M{\o}ller in the framework of Weitzenbo¨\ddot{o}ck geometry. We show that the energy contained in a sphere is shared by its interior as well as exterior. We also calculate the components of the spatial momentum to evaluate the angular momentum distribution. We show that the only non-vanishing components of the angular momentum is in the Z direction.Comment: Latex. Will appear in IJMP

    A set-valued framework for birth-and-growth process

    Get PDF
    We propose a set-valued framework for the well-posedness of birth-and-growth process. Our birth-and-growth model is rigorously defined as a suitable combination, involving Minkowski sum and Aumann integral, of two very general set-valued processes representing nucleation and growth respectively. The simplicity of the used geometrical approach leads us to avoid problems arising by an analytical definition of the front growth such as boundary regularities. In this framework, growth is generally anisotropic and, according to a mesoscale point of view, it is not local, i.e. for a fixed time instant, growth is the same at each space point

    Fingerprint Analysis with Marked Point Processes

    Get PDF
    We present a framework for fingerprint matching based on marked point process models. An efficient Monte Carlo algorithm is developed to calculate the marginal likelihood ratio for the hypothesis that two observed prints originate from the same finger against the hypothesis that they originate from different fingers. Our model achieves good performance on an NIST-FBI fingerprint database of 258 matched fingerprint pairs

    Kerr-Newman Solution and Energy in Teleparallel Equivalent of Einstein Theory

    Get PDF
    An exact charged axially symmetric solution of the coupled gravitational and electromagnetic fields in the teleparallel equivalent of Einstein theory is derived. It is characterized by three parameters `` the gravitational mass MM, the charge parameter QQ and the rotation parameter aa" and its associated metric gives Kerr-Newman spacetime. The parallel vector field and the electromagnetic vector potential are axially symmetric. We then, calculate the total energy using the gravitational energy-momentum. The energy is found to be shared by its interior as well as exterior. Switching off the charge parameter we find that no energy is shared by the exterior of the Kerr-Newman black hole.Comment: 11 pages, Latex. Will appear in Mod. Phys. Lett.

    Simple Model for Wet Granular Materials with Liquid Clusters

    Full text link
    We propose a simple phenomenological model for wet granular media to take into account many particle interaction through liquid in the funicular state as well as two-body cohesive force by a liquid bridge in the pendular state. In the wet granular media with small liquid content, liquid forms a bridge at each contact point, which induces two-body cohesive force due to the surface tension. As the liquid content increases, some liquid bridges merge, and more than two grains interact through a single liquid cluster. In our model, the cohesive force acts between the grains connected by a liquid-gas interface. As the liquid content increases, the number of grains that interact through the liquid increases, but the liquid-gas interface may decrease when liquid clusters are formed. Due to this competition, our model shows that the shear stress has a maximum as a function of the liquid-content.Comment: 6 pages, 8 figures. Discussion is updated. Accepted for publication in EP

    Energy Contents of Gravitational Waves in Teleparallel Gravity

    Full text link
    The conserved quantities, that are, gravitational energy-momentum and its relevant quantities are investigated for cylindrical and spherical gravitational waves in the framework of teleparallel equivalent of General Relativity using the Hamiltonian approach. For both cylindrical and spherical gravitational waves, we obtain definite energy and constant momentum. The constant momentum shows consistency with the results available in General Relativity and teleparallel gravity. The angular momentum for cylindrical and spherical gravitational waves also turn out to be constant. Further, we evaluate their gravitational energy-momentum fluxes and gravitational pressure.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.

    Elementary analysis of the special relativistic combination of velocities, Wigner rotation, and Thomas precession

    Full text link
    The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary, which will suit a first course in relativity; (2) intermediate, to suit a second course; and (3) advanced, to suit higher level students. We then give a summary of useful results, and suggest further reading in this often obscure field.Comment: V1: 25 pages, 6 figures; V2: 22 pages, 5 figures. The revised version is shortened and the arguments streamlined. Minor changes in notation and figures. This version matches the published versio

    The evolution of field early-type galaxies to z~0.7

    Get PDF
    We have measured the Fundamental Plane (FP) parameters for a sample of 30 field early-type galaxies (E/S0) in the redshift range 0.1<z<0.66. We find that: i) the FP is defined and tight out to the highest redshift bin; ii) the intercept \gamma evolves as d\gamma/dz=0.58+0.09-0.13 (for \Omega=0.3, \Omega_{\Lambda}=0.7), or, in terms of average effective mass to light ratio, as d\log(M/L_B)/dz=-0.72+0.11-0.16, i.e. faster than is observed for cluster E/S0 -0.49+-0.05. In addition, we detect [OII] emission >5\AA in 22% of an enlarged sample of 42 massive E/S0 in the range 0.1<z<0.73, in contrast with the quiescent population observed in clusters at similar z. We interpret these findings as evidence that a significant fraction of massive field E/S0 experiences secondary episodes of star-formation at z<1.Comment: ApJ Letters, in pres
    • …
    corecore