14,611 research outputs found

    Spontaneous Ignition Characteristics of Hydrocarbon Fuel-air Mixtures

    Get PDF
    Although the subject of spontaneous ignition of liquid fuels has received considerable attention in the past, the role of fuel evaporation in the overall spontaneous ignition process is still unclear. A main purpose of this research is to carry out measurements of ignition delay times, using fuels of current and anticipated future aeronautical interest, at test conditions that are representative of those encountered in modern gas turbine engines. Attention is focused on the fuel injection process, in particlar the measurement and control of man fuel drop size and fuel-air spatial distribution. The experiments are designed to provide accurate information on the role of fuel evaporation processes in determining the overall ignition delay time. The second objective is to examine in detail the theoretical aspects of spontaneous ignition in order to improve upon current knowledge and understanding of the basic processes involved, so that the results of the investigation can find general and widespead application

    Computing Individual Risks based on Family History in Genetic Disease in the Presence of Competing Risks

    Get PDF
    When considering a genetic disease with variable age at onset (ex: diabetes , familial amyloid neuropathy, cancers, etc.), computing the individual risk of the disease based on family history (FH) is of critical interest both for clinicians and patients. Such a risk is very challenging to compute because: 1) the genotype X of the individual of interest is in general unknown; 2) the posterior distribution P(X|FH, T > t) changes with t (T is the age at disease onset for the targeted individual); 3) the competing risk of death is not negligible. In this work, we present a modeling of this problem using a Bayesian network mixed with (right-censored) survival outcomes where hazard rates only depend on the genotype of each individual. We explain how belief propagation can be used to obtain posterior distribution of genotypes given the FH, and how to obtain a time-dependent posterior hazard rate for any individual in the pedigree. Finally, we use this posterior hazard rate to compute individual risk, with or without the competing risk of death. Our method is illustrated using the Claus-Easton model for breast cancer (BC). This model assumes an autosomal dominant genetic risk factor such as non-carriers (genotype 00) have a BC hazard rate λ\lambda 0 (t) while carriers (genotypes 01, 10 and 11) have a (much greater) hazard rate λ\lambda 1 (t). Both hazard rates are assumed to be piecewise constant with known values (cuts at 20, 30,. .. , 80 years). The competing risk of death is derived from the national French registry

    A computer architecture for intelligent machines

    Get PDF
    The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems

    Changes in the subsurface stratification of the Sun with the 11-year activity cycle

    Full text link
    We report on the changes of the Sun's subsurface stratification inferred from helioseismology data. Using SOHO/MDI (SOlar and Heliospheric Observatory/Michelson Doppler Imager) data for the last 9 years and, more precisely, the temporal variation of f-mode frequencies, we have computed the variation of the radius of subsurface layers of the Sun by applying helioseismic inversions. We have found a variability of the ``helioseismic'' radius in antiphase with the solar activity, with the strongest variations of the stratification being just below the surface around 0.995RR_{\odot}. Besides, the radius of the deeper layers of the Sun, between 0.975RR_{\odot} and 0.99RR_{\odot} changes in phase with the 11-year cycle.Comment: 14 pages, 7 figures, accepted in ApJ

    Spontaneous ignition characteristics of gaseous hydrocarbon-air mixtures

    Get PDF
    Experiments are conducted to determine the spontaneous ignition delay times of gaseous propane, kerosine vapor, and n-heptane vapor in mixtures with air, and oxygen-enriched air, at atmospheric pressure. Over a range of equivalence ratios from 0.2 to 0.8 it is found that ignition delay times are sensibly independent of fuel concentration. However, the results indicate a strong dependence of delay times on oxygen concentration. The experimental data for kerosine and propane demonstrate very close agreement with the results obtained previously by Mullins and Lezberg respectively

    Anisotropy induced Feshbach resonances in a quantum dipolar gas of magnetic atoms

    Full text link
    We explore the anisotropic nature of Feshbach resonances in the collision between ultracold magnetic submerged-shell dysprosium atoms, which can only occur due to couplings to rotating bound states. This is in contrast to well-studied alkali-metal atom collisions, where most Feshbach resonances are hyperfine induced and due to rotation-less bound states. Our novel first-principle coupled-channel calculation of the collisions between open-4f-shell spin-polarized bosonic dysprosium reveals a striking correlation between the anisotropy due to magnetic dipole-dipole and electrostatic interactions and the Feshbach spectrum as a function of an external magnetic field. Over a 20 mT magnetic field range we predict about a dozen Feshbach resonances and show that the resonance locations are exquisitely sensitive to the dysprosium isotope.Comment: 5 pages, 4 figure

    Atomization of broad specification aircraft fuels

    Get PDF
    The atomization properties of liquid fuels for the potential use in aircraft gas turbine engines are discussed. The significance of these properties are addressed with respect to the ignition and subsequent combustion behavior of the fuel spray/air mixture. It is shown that the fuel properties which affect the atomization behavior (viscosity, surface tension, and density) are less favorable for the broad specification fuels as compared to with those for conventional fuels

    Early out-of-equilibrium beam-plasma evolution

    Full text link
    We solve analytically the out-of-equilibrium initial stage that follows the injection of a radially finite electron beam into a plasma at rest and test it against particle-in-cell simulations. For initial large beam edge gradients and not too large beam radius, compared to the electron skin depth, the electron beam is shown to evolve into a ring structure. For low enough transverse temperatures, the filamentation instability eventually proceeds and saturates when transverse isotropy is reached. The analysis accounts for the variety of very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter

    Femtosecond x rays from laser-plasma accelerators

    Get PDF
    Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure
    corecore