415 research outputs found

    Subduction Duration and Slab Dip

    Get PDF
    The dip angles of slabs are among the clearest characteristics of subduction zones, but the factors that control them remain obscure. Here, slab dip angles and subduction parameters, including subduction duration, the nature of the overriding plate, slab age, and convergence rate, are determined for 153 transects along subduction zones for the present day. We present a comprehensive tabulation of subduction duration based on isotopic ages of arc initiation and stratigraphic, structural, plate tectonic and seismic indicators of subduction initiation. We present two ages for subduction zones, a long‐term age and a reinitiation age. Using cross correlation and multivariate regression, we find that (1) subduction duration is the primary parameter controlling slab dips with slabs tending to have shallower dips at subduction zones that have been in existence longer; (2) the long‐term age of subduction duration better explains variation of shallow dip than reinitiation age; (3) overriding plate nature could influence shallow dip angle, where slabs below continents tend to have shallower dips; (4) slab age contributes to slab dip, with younger slabs having steeper shallow dips; and (5) the relations between slab dip and subduction parameters are depth dependent, where the ability of subduction duration and overriding plate nature to explain observed variation decreases with depth. The analysis emphasizes the importance of subduction history and the long‐term regional state of a subduction zone in determining slab dip and is consistent with mechanical models of subduction

    Implantation of subcutaneous heart rate data loggers in southern elephant seals (Mirounga leonina)

    Get PDF
    Unlike most phocid species (Phocidae), Mirounga leonina (southern elephant seals) experience a catastrophic moult where they not only replace their hair but also their epidermis when ashore for approximately 1 month. Few studies have investigated behavioural and physiological adaptations of southern elephant seals during the moult fast, a particularly energetically costly life cycle’s phase. Recording heart rate is a reliable technique for estimating energy expenditure in the field. For the first time, subcutaneous heart rate data loggers were successfully implanted during the moult in two free-ranging southern elephant seals over 3–6 days. No substantial postoperative complications were encountered and consistent heart rate data were obtained. This promising surgical technique opens new opportunities for monitoring heart rate in phocid seals

    Monitoring the wild black bear's reaction to human and environmental stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bears are among the most physiologically remarkable mammals. They spend half their life in an active state and the other half in a state of dormancy without food or water, and without urinating, defecating, or physical activity, yet can rouse and defend themselves when disturbed. Although important data have been obtained in both captive and wild bears, long-term physiological monitoring of bears has not been possible until the recent advancement of implantable devices.</p> <p>Results</p> <p>Insertable cardiac monitors that were developed for use in human heart patients (RevealÂź XT, Medtronic, Inc) were implanted in 15 hibernating bears. Data were recovered from 8, including 2 that were legally shot by hunters. Devices recorded low heart rates (pauses of over 14 seconds) and low respiration rates (1.5 breaths/min) during hibernation, dramatic respiratory sinus arrhythmias in the fall and winter months, and elevated heart rates in summer (up to 214 beats/min (bpm)) and during interactions with hunters (exceeding 250 bpm). The devices documented the first and last day of denning, a period of quiescence in two parturient females after birthing, and extraordinary variation in the amount of activity/day, ranging from 0 (winter) to 1084 minutes (summer). Data showed a transition toward greater nocturnal activity in the fall, preceding hibernation. The data-loggers also provided evidence of the physiological and behavioral responses of bears to our den visits to retrieve the data.</p> <p>Conclusions</p> <p>Annual variations in heart rate and activity have been documented for the first time in wild black bears. This technique has broad applications to wildlife management and physiological research, enabling the impact of environmental stressors from humans, changing seasons, climate change, social interactions and predation to be directly monitored over multiple years.</p

    Mitral leaflet anatomy revisited

    Get PDF
    ObjectiveThe aims of this work were to employ functional imaging capabilities of the Visible Heart laboratory and endoscopic visualization of mitral valves in perfusion-fixed specimens to better characterize variability in mitral valve leaflet anatomy and to provide a method to classify mitral leaflets that varies from the current nomenclature.MethodsWe gathered functional endoscopic video footage (11 isolated reanimated human hearts) and static endoscopic anatomical images (38 perfusion-fixed specimens) of mitral leaflets. Commissure and cleft locations were charted using Carpentier's accepted description.ResultsAll hearts had 2 commissures separating anterior and posterior leaflets. “Standard” clefts separating P1/P2 were found in 66% of hearts (n = 25), and standard clefts separating P2/P3 were present in 71% of hearts (n = 27). “Deviant” clefts occurred in each region of the anterior leaflet (A1, A2, A3), and their relative occurrences were 5%, 8%, and 13% (n = 2, 3, 5), respectively. Deviant clefts were found in posterior leaflets: 13.2% in P1 (n = 5), 32% in P2 (n = 12), and 21% in P3 (n = 8).ConclusionsHumans elicit complex and highly variable mitral valve anatomy. We suggest a complementary, yet simple nomenclature to address variation in mitral valve anatomy by describing clefts as either standard or deviant and locating regions in which they occur (A1 to A3 or P1 to P3)

    Discriminating among Earth composition models using geo-antineutrinos

    Full text link
    It has been estimated that the entire Earth generates heat corresponding to about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to originate mainly from the radioactive decay of elements like U, Th and K, deposited in the crust and mantle of the Earth. Radioactivity of these elements produce not only heat but also antineutrinos (called geo-antineutrinos) which can be observed by terrestrial detectors. We investigate the possibility of discriminating among Earth composition models predicting different total radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at these places. By simulating the future geo-antineutrino data as well as reactor antineutrino background contributions, we try to establish to which extent we can discriminate among Earth composition models for given exposures (in units of kt⋅\cdot yr) at these two sites on our planet. We use also information on neutrino mixing parameters coming from solar neutrino data as well as KamLAND reactor antineutrino data, in order to estimate the number of geo-antineutrino induced events.Comment: 24 pages, 10 figures, final version to appear in JHE

    Density and P‐wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    Full text link
    We estimate density and P‐wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P‐wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P‐wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 − 300 km. These values correlate with high‐velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high‐density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re‐Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P‐wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere. The high‐density PMP lithosphere is presently gravitationally unstable and prone to delamination.Key Points:Density and P‐wave velocity in the lithospheric mantle beneath the Paraná Magmatic Province are highHigh density precludes a depleted cratonic lithosphere and indicates refertilized lithospheric mantleBasalt magmatism suggests refertilized mantle with asthenospheric components from mantle wedgePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/1/ggge21079-sup-0003-2016GC006369-fs02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/2/ggge21079-sup-0004-2016GC006369-fs03.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/3/ggge21079-sup-0002-2016GC006369-fs01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/4/ggge21079_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/5/ggge21079.pd

    Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy

    Get PDF
    Insight into upper-mantle processes can be gained by linking flow-induced mineral alignment to regional deformation and seismic anisotropy patterns. Through a series of linked micro–macro scale numerical experiments, we explore the rheologic effects of crystal preferred orientation (CPO) and evaluate the magnitude of possible impacts on the pattern of flow and associated seismic signals for mantle that includes a cooling, thickening young oceanic lithosphere. The CPO and associated anisotropic rheology, computed by a micromechanical polycrystal model, are coupled with a large scale flow model (Eulerian Finite Element method) via a local viscosity tensor field, which quantifies the stress:strain rate response of a textured polycrystal. CPO is computed along streamlines throughout the model space and the corresponding viscosity tensor field at each element defines the local properties for the next iteration of the flow field. Stable flow and CPO distributions were obtained after several iterations for the two dislocation glide cases tested: linear and nonlinear stress:strain rate polycrystal behaviour. The textured olivine polycrystals are found to have anisotropic viscosity tensors in a significant portion of the model space. This directional dependence in strength impacts the pattern of upper-mantle flow. For background asthenosphere viscosity of ∌1020 Pa s and a rigid lithosphere, the modification of the corner flow pattern is not drastic but the change could have geologic implications. Feedback in the development of CPO occurs, particularly in the region immediately below the base of the lithosphere. Stronger fabric is predicted below the flanks of a spreading centre for fully coupled, power-law polycrystals than was determined using prior linear, intermediate coupling polycrystal models. The predicted SKS splitting is modestly different (∌0.5 s) between the intermediate and fully coupled cases for oceanic plates less than 20 Myr old. The magnitude of azimuthal anisotropy for surface waves, on the other hand, is predicted to be twice as large for fully coupled power-law flow/polycrystals than for linear, intermediate coupled flow/polycrystal models

    Crustal Composition and Moho Variations of the Central and Eastern United States: Improving Resolutionand Geologic Interpretation of EarthScope USArray Seismic Images Using Gravity

    Get PDF
    EarthScope\u27s USArray Transportable Array has shortcomings for the purpose of interpreting geologic features of wavelengths less than the Transportable Array station spacing, but these can be overcome by using higher spatial resolution gravity data. In this study, we exploit USArray receiver functions to reduce nonuniqueness in the interpretation of gravity anomalies. We model gravity anomalies from previously derived density variations of sedimentary basins, crustal Vp/Vs variation, Moho variation, and upper mantle density variation derived from body wave imaging informed by surface wave tomography to estimate Vp/Vs. Although average densities and density contrasts for these seismic variations can be derived, the gravity anomalies modeled from them do not explain the entire observed gravity anomaly field in the United States. We use the unmodeled gravity anomalies (residuals) to reconstruct local variations in densities of the crust associated with geologic sources. The approach uses velocity‐density relationships and differs from density computations that assume isostatic compensation. These intracrustal densities identify geologic sources not sampled by and, in some cases, aliased by the USArray station spacing. We show an example of this improvement in the vicinity of the Bloomfield Pluton, north of the bootheel of Missouri, in the central United States

    Malaria Clusters among Illegal Chinese Immigrants to Europe through Africa

    Get PDF
    Between November 2002 and March 2003, 17 cases of malaria (1 fatal) were observed in illegal Chinese immigrants who traveled to Italy through Africa. A further cluster of 12 was reported in August, 2002. Several immigrants traveled by air, making the risk of introducing sudden acute respiratory syndrome a possibility should such illegal immigrations continue
    • 

    corecore