1,826 research outputs found

    New constrains on Gliese 86 B

    Get PDF
    We present the results of multi epochs imaging observations of the companion to the planetary host Gliese 86. Associated to radial velocity measurements, this study aimed at characterizing dynamically the orbital properties and the mass of this companion (here after Gliese 86 B), but also at investigating the possible history of this particular system. We used the adaptive optics instrument NACO at the ESO Very Large Telescope to obtain deep coronographic imaging in order to determine new photometric and astrometric measurements of Gliese 86 B. Part of the orbit is resolved. The photometry of Gliese B indicates colors compatible with a ~70 Jupiter mass brown dwarf or a white dwarf. Both types of objects allow to fit the available, still limited astrometric data. Besides, if we attribute the long term radial velocity residual drift observed for Gliese A to B, then the mass of the latter object is ~0.5 Msun. We analyse both astrometric and radial velocity data to propose first orbital parameters for Gliese B. Assuming Gliese B is a ~0.5 Msun white dwarf, we explore the constraints induced by this hypothesis and refine the parameters of the system.Comment: 10 pages, 18 figures, accepted in A&

    Comment on "Large energy gaps in CaC6 from tunneling spectroscopy: possible evidence of strong-coupling superconductivity"

    Full text link
    Comment on "Large energy gaps in CaC6 from tunneling spectroscopy: possible evidence of strong-coupling superconductivity

    A library of near-infrared integral field spectra of young M-L dwarfs

    Full text link
    We present a library of near-infrared (1.1-2.45 microns) medium-resolution (R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of companions with known ages and of isolated objects. We use it to (re)derive the NIR spectral types, luminosities and physical parameters of the targets, and to test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX models yield close Teff and log g estimates for each sources. The models seem to evidence a 600-300+600 K drop of the effective temperature at the M-L transition. Assuming the former temperatures are correct, we derive new mass estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5-L0 sources to the Teff to derive semi-empirical radii estimates that do not match "hot-start" evolutionary models predictions at 1-3 Myr. We use complementary data to demonstrate that atmospheric models are able to reproduce the combined optical and infrared spectral energy distribution, together with the near-infrared spectra of these sources simultaneously. But the models still fail to represent the dominant features in the optical. This issue casts doubts on the ability of these models to predict correct effective temperatures from near-infrared spectra alone. We advocate the use of photometric and spectroscopic data covering a broad range of wavelengths to study the properties of very low mass young companions to be detected with the planet imagers (Subaru/SCExAO, LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).Comment: 27 pages, 14 tables, 19 figures, accepted for publication in Astronomy & Astrophysic

    High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter

    Full text link
    Context. High contrast imaging is a powerful technique to search for gas giant planets and brown dwarfs orbiting at separation larger than several AU. Around solar-type stars, giant planets are expected to form by core accretion or by gravitational instability, but since core accretion is increasingly difficult as the primary star becomes lighter, gravitational instability would be the a probable formation scenario for yet-to-be-found distant giant planets around a low-mass star. A systematic survey for such planets around M dwarfs would therefore provide a direct test of the efficiency of gravitational instability. Aims. We search for gas giant planets orbiting around late-type stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep high resolution images of 16 targets with the adaptive optic system of VLT-NACO in the Lp band, using direct imaging and angular differential imaging. This is currently the largest and deepest survey for Jupiter-mass planets around Mdwarfs. We developed and used an integrated reduction and analysis pipeline to reduce the images and derive our 2D detection limits for each target. The typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes beyond 1". For each target we also determine the probability of detecting a planet of a given mass at a given separation in our images. Results. We derived accurate detection probabilities for planetary companions, taking into account orbital projection effects, with in average more than 50% probability to detect a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong constraints on the existence of Jupiter-mass planets around this sample of young M-dwarfs.Comment: Accepted for publication in A&

    Pressure-induced enhancement of superconductivity and superconducting-superconducting transition in CaC_6\_6

    Get PDF
    We measured the electrical resistivity, ϱ(T)\varrho(T), of superconducting CaC_6\_6 at ambient and high pressure up to 16 GPa. For PP \leq8 GPa, we found a large increase of T_cT\_c with pressure from 11.5 up to 15.1 K. At 8 GPa, T_cT\_c drops and levels off at 5 K above 10 GPa. Correspondingly, the residual ϱ\varrho increases by \approx 200 times and the ϱ(T)\varrho(T) behavior becomes flat. The recovery of the pristine behavior after depressurization is suggestive of a phase transition at 8 GPa between two superconducting phases with good and bad metallic properties, the latter with a lower T_cT\_c and more static disorder

    Experimental evidence of s-wave superconductivity in bulk CaC6_{6}

    Full text link
    The temperature dependence of the in-plane magnetic penetration depth, λab(T)\lambda_{ab}(T), has been measured in a c-axis oriented polycrystalline CaC6_{6} bulk sample using a high-resolution mutual inductance technique. A clear exponential behavior of λab(T)\lambda_{ab}(T) has been observed at low temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the standard BCS theory yields λab(0)=(720±80)\lambda_{ab}(0)=(720\pm 80) Angstroem and Δ(0)=(1.79±0.08)\Delta(0)=(1.79\pm 0.08) meV. The ratio 2Δ(0)/kBTc=(3.6±0.2)2\Delta(0)/k_{_B}T_{c}=(3.6\pm 0.2) gives indication for a conventional weakly coupled superconductor.Comment: To appear in Phys. Rev. Let

    Polyphonic Sound Event Tracking Using Linear Dynamical Systems

    Get PDF
    In this paper, a system for polyphonic sound event detection and tracking is proposed, based on spectrogram factorisation techniques and state space models. The system extends probabilistic latent component analysis (PLCA) and is modelled around a 4-dimensional spectral template dictionary of frequency, sound event class, exemplar index, and sound state. In order to jointly track multiple overlapping sound events over time, the integration of linear dynamical systems (LDS) within the PLCA inference is proposed. The system assumes that the PLCA sound event activation is the (noisy) observation in an LDS, with the latent states corresponding to the true event activations. LDS training is achieved using fully observed data, making use of ground truth-informed event activations produced by the PLCA-based model. Several LDS variants are evaluated, using polyphonic datasets of office sounds generated from an acoustic scene simulator, as well as real and synthesized monophonic datasets for comparative purposes. Results show that the integration of LDS tracking within PLCA leads to an improvement of +8.5-10.5% in terms of frame-based F-measure as compared to the use of the PLCA model alone. In addition, the proposed system outperforms several state-of-the-art methods for the task of polyphonic sound event detection
    corecore