77 research outputs found
Dynamic Identification as a Tool to Constrain Numerical Models for Structural Analysis of Historical Buildings
Operational modal analysis (OMA), also known as output-only or ambient vibration test (AVT), has become in last decades a powerful approach for a wide range of applications in the field of civil engineering. When historical structures are investigated this approach is particularly appealing avoiding shaking the structure artificially. This paper discusses the assessment of the dynamic behavior of the Baptistery of San Giovanni in Firenze (Italy). Based on experimental results obtained through a temporary network of seismic sensors, the enhanced frequency domain decomposition (EFDD) technique is employed to evaluate frequencies and mode shapes. These modal parameters are subsequently used to calibrate a 3D finite element (FE) model of the Baptistery. Genetic algorithm (GA) technique is employed for calibration, thus allowing to obtain an accurate and robust numerical model. To verify the effects introduced by the number of identified modal parameters on the model updating procedure several analyses are in addition performed. This paper, providing an illustrative case study in the field of health monitoring of monumental structures, confirms that the OMA technique is able to derive effective information on the dynamic behavior of historical buildings, which in turn is useful to tune reliable and robust numerical models to be employed for structural analysis
Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption
During operational ash-cloud forecasting, prediction of ash concentration and total erupted mass directly depends on the determination of mass eruption rate (MER), which is typically inferred from plume height. Uncertainties for plume heights are large, especially for bent-over plumes in which the ascent dynamics are strongly affected by the surrounding wind field. Here we show how uncertainties can be reduced if MER is derived directly from geophysical observations of source dynamics. The combination of infrasound measurements and thermal camera imagery allows for the infrasonic type of source to be constrained (a dipole in this case) and for the plume exit velocity to be calculated (54–142 m/s) based on the acoustic signal recorded during the 2010 Eyjafjallajökull eruption from 4 to 21 May. Exit velocities are converted into MER using additional information on vent diameter (50±10 m) and mixture density (5.4±1.1 kg/m3), resulting in an average ∼9×105 kg/s MER during the considered period of the eruption. We validate our acoustic-derived MER by using independent measurements of plume heights (Icelandic Meteorological Office radar observations). Acoustically derived MER are converted into plume heights using field-based relationships and a 1D radially averaged buoyant plume theory model using a reconstructed total grain size distribution. We conclude that the use of infrasonic monitoring may lead to important understanding of the plume dynamics and allows for real-time determination of eruption source parameters. This could improve substantially the forecasting of volcano-related hazards, with important implications for civil aviation safety
Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography
Non-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal parameters vital for all the correct prevention strategies when the functionality and the health status of the structures have to be evaluated. The existing experimental techniques used to evaluate the fundamental modes of a structure are based either on seismometric sensors or on Ground-based Synthetic Aperture Radar (GbSAR). Such devices have both serious drawbacks, which prevent their application at a large scale or in the short term. We here demonstrate that the MIR DH based technique can fully overcome these limitations and has the potential to represent a breakthrough advance in the field of dynamic characterization of large structures
Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes
Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes
- …