66 research outputs found

    I Know My Neighbour: Individual Recognition in Octopus vulgaris

    Get PDF
    Background: Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings: The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 ‘‘sightallowed’’ (and 12 ‘‘isolated’’) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (‘‘sham switches’’) or unfamiliar conspecifics (‘‘real switches’’). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions: Octopuses appear able to recognise conspecifics and to remember the individual previously met for at leas

    Sex Promotes Spatial and Dietary Segregation in a Migratory Shorebird during the Non-Breeding Season

    Get PDF
    Several expressions of sexual segregation have been described in animals, especially in those exhibiting conspicuous dimorphism. Outside the breeding season, segregation has been mostly attributed to size or age-mediated dominance or to trophic niche divergence. Regardless of the recognized implications for population dynamics, the ecological causes and consequences of sexual segregation are still poorly understood. We investigate the foraging habits of a shorebird showing reversed sexual dimorphism, the black-tailed godwit Limosa limosa, during the winter season, and found extensive segregation between sexes in spatial distribution, microhabitat use and dietary composition. Males and females exhibited high site-fidelity but differed in their distributions at estuary-scale. Male godwits (shorter-billed) foraged more frequently in exposed mudflats than in patches with higher water levels, and consumed more bivalves and gastropods and fewer polychaetes than females. Females tended to be more frequently involved and to win more aggressive interactions than males. However, the number of aggressions recorded was low, suggesting that sexual dominance plays a lesser role in segregation, although its importance cannot be ruled out. Dimorphism in the feeding apparatus has been used to explain sex differences in foraging ecology and behaviour of many avian species, but few studies confirmed that morphologic characteristics drive individual differences within each sex. We found a relationship between resource use and bill size when pooling data from males and females. However, this relationship did not hold for either sex separately, suggesting that differences in foraging habits of godwits are primarily a function of sex, rather than bill size. Hence, the exact mechanisms through which this segregation operates are still unknown. The recorded differences in spatial distribution and resource use might expose male and female to distinct threats, thus affecting population dynamics through differential mortality. Therefore, population models and effective conservation strategies should increasingly take sex-specific requirements into consideration

    The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse

    No full text
    In humans, 1011 neutrophils are released from the bone marrow per day, and these cells have a half-life in the blood of only ∼6.5 h. Although it is generally believed that neutrophils are cleared from the circulation via the liver and spleen, in this study using 111In-labeled senescent neutrophils, we show that in mice, 32% of neutrophils are cleared from the circulation via the bone marrow. We have previously shown that senescent neutrophils home to the bone marrow in a CXCR4-dependent manner, and we show here that pretreatment of neutrophils with pertussis toxin significantly inhibits neutrophil clearance via the bone marrow (75%), consistent with a role for chemokines in this process. By labeling senescent neutrophils with inert fluorescent microspheres, we have tracked their fate and shown that in vivo, they are ultimately phagocytosed by bone marrow stromal macrophages. Finally, we show that under noninflammatory conditions, circulating levels of neutrophils are regulated by granulocyte-colony stimulating factor (G-CSF), but not interleukin-17. Interestingly, we report that the uptake of apoptotic neutrophils by bone marrow macrophages stimulates their production of G-CSF in vitro. Taken together, these data provide evidence that the bone marrow represents a major site of neutrophil clearance in mice.—Furze, R. C., Rankin, S. M. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse

    Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): a role for ecological causation

    No full text
    Unambiguous examples of ecological causation of sexual dimorphism are rare, and the best evidence involves sexual differences in trophic morphology. We show that moderate female-biased sexual dimorphism in bill curvature is the ancestral condition in hermit hummingbirds (Phaethornithinae), and that it is greatly amplified in species such as Glaucis hirsutus and Phaethornis guy, where bills of females are 60 per cent more curved than bills of males. In contrast, bill curvature dimorphism is lost or reduced in a lineage of short-billed hermit species and in specialist Eutoxeres sicklebill hermits. In the hermits, males tend to be larger than females in the majority of species, although size dimorphism is typically small. Consistent with earlier studies of hummingbird feeding performance, both raw regressions of traits and phylogenetic independent contrasts supported the prediction that dimorphism in bill curvature of hermits is associated with longer bills. Some evidence indicates that differences between sexes of hermit hummingbirds are associated with differences in the use of food plants. We suggest that some hermit hummingbirds provide model organisms for studies of ecological causation of sexual dimorphism because their sexual dimorphism in bill curvature provides a diagnostic clue for the food plants that need to be monitored for studies of sexual differences in resource use
    • …
    corecore