20 research outputs found

    Influence of Inhaled Amiloride on Lung Fluid Clearance in Response to Normobaric Hypoxia in Healthy Individuals.

    Get PDF
    AIM: To investigate the role of epithelial sodium channels (ENaC) on lung fluid clearance in response to normobaric hypoxia, 20 healthy subjects were exposed to 15 hours of hypoxia (fraction of inspired oxygen [FiO2] = 12.5%) on two randomized occasions: (1) inhaled amiloride (A) (1.5 mg/5 mL saline); and (2) inhaled saline placebo (P). Changes in lung fluid were assessed through chest computed tomography (CT) for lung tissue volume (TV), and the diffusion capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) for pulmonary capillary blood volume (VC). Extravascular lung water (EVLW) was derived as TV-VC and changes in the CT attenuation distribution histograms were reviewed. RESULTS: Normobaric hypoxia caused (1) a reduction in EVLW (change from baseline for A vs. P, -8.5% ± 3.8% vs. -7.9% ± 5.2%, p  0.05), and (4) CT attenuation distribution became more negative, leftward skewed, and kurtotic (p < 0.05). CONCLUSION: Acute normobaric hypoxia caused a reduction in lung fluid that was unaffected by ENaC inhibition through inhaled amiloride. Although possible amiloride-sensitive ENaC may not be necessary to maintain lung fluid balance in response to hypoxia, it is more probable that normobaric hypoxia promotes lung fluid clearance rather than accumulation for the majority of healthy individuals. The observed reduction in interstitial lung fluid means alveolar fluid clearance may not have been challenged

    Expression Profiling Reveals Novel Hypoxic Biomarkers in Peripheral Blood of Adult Mice Exposed to Chronic Hypoxia

    Get PDF
    Hypoxia induces a myriad of changes including an increase in hematocrit due to erythropoietin (EPO) mediated erythropoiesis. While hypoxia is of importance physiologically and clinically, lacunae exist in our knowledge of the systemic and temporal changes in gene expression occurring in blood during the exposure and recovery from hypoxia. To identify these changes expression profiling was conducted on blood obtained from cohorts of C57Bl-10 wild type mice that were maintained at normoxia (NX), exposed for two weeks to normobaric chronic hypoxia (CH) or two weeks of CH followed by two weeks of normoxic recovery (REC). Using stringent bioinformatic cut-offs (0% FDR, 2 fold change cut-off), 230 genes were identified and separated into four distinct temporal categories. Class I) contained 1 transcript up-regulated in both CH and REC; Class II) contained 202 transcripts up-regulated in CH but down-regulated after REC; Class III) contained 9 transcripts down-regulated both in CH and REC; Class IV) contained 18 transcripts down-regulated after CH exposure but up-regulated after REC. Profiling was independently validated and extended by analyzing expression levels of selected genes as novel biomarkers from our profile (e.g. spectrin alpha-1, ubiquitin domain family-1 and pyrroline-5-carboxylate reductase-1) by performing qPCR at 7 different time points during CH and REC. Our identification and characterization of these genes define transcriptome level changes occurring during chronic hypoxia and normoxic recovery as well as novel blood biomarkers that may be useful in monitoring a variety of physiological and pathological conditions associated with hypoxia

    Détermination des normes de tolérance thermophysiologique pour le travail en installation nucléaire de base en tenue TIVA

    No full text
    Cette étude a eu pour but de déterminer la durée du port de la tenue ventilée TIVA au cours d’un exercice physique à la chaleur en fonction de l’atteinte de seuils physiologiques de sécurité. Cinq sujets volontaires équipés de la tenue ventilée TIVA ont effectué un exercice sur tapis roulant (3,5 km/h, 3 % de pente) en chambre thermoclimatique à 25, 35 et 45 °C d’une durée maximale de 2 h. La fréquence cardiaque, la température rectale (Tre) et la température cutanée moyenne (
    corecore