2,209 research outputs found

    A programmable two-qubit quantum processor in silicon

    Full text link
    With qubit measurement and control fidelities above the threshold of fault-tolerance, much attention is moving towards the daunting task of scaling up the number of physical qubits to the large numbers needed for fault tolerant quantum computing. Here, quantum dot based spin qubits may offer significant advantages due to their potential for high densities, all-electrical operation, and integration onto an industrial platform. In this system, the initialisation, readout, single- and two-qubit gates have been demonstrated in various qubit representations. However, as seen with other small scale quantum computer demonstrations, combining these elements leads to new challenges involving qubit crosstalk, state leakage, calibration, and control hardware which provide invaluable insight towards scaling up. Here we address these challenges and demonstrate a programmable two-qubit quantum processor in silicon by performing both the Deutsch-Josza and the Grover search algorithms. In addition, we characterise the entanglement in our processor through quantum state tomography of Bell states measuring state fidelities between 85-89% and concurrences between 73-80%. These results pave the way for larger scale quantum computers using spins confined to quantum dots

    Physical characteristics underpinning repetitive lunging in fencing

    Get PDF
    Given the repetitive demand to execute lunging and changes in direction within fencing, the ability to sustain these at maximal capacity is fundamental to performance. The aim of this study was threefold. Firstly to provide normative values for this variable referred to as repeat lunge ability (RLA) and secondly to identify the physical characteristics that underpin it. Thirdly, was to establish if a cause and effect relationship existed by training the associated characteristics. Assessment of lower body power, reactive strength, speed, change of direction speed (CODS) and a sport specific RLA were conducted on senior and junior elite male fencers (n = 36). Fencers were on average (± SD) 18.9 ± 3.2 years of age, 174.35 ± 10.42 cm tall, 70.67 ± 7.35 kg in mass, and 8.5 ± 4.2 years fencing experience. The RLA test had average work times of 16.03 s ± 1.40 and demonstrated "large" to "very large" associations with all tested variables, but in particular CODS (r = .70) and standing broad jump (SBJ; r = -68). Through linear regression analysis, these also provided a two-predictor model accounting for 61% of the common variance associated with RLA. A cause and effect relationship with SBJ and CODS was confirmed by the training group, where RLA performance in these fencers improved from 15.80 ± 1.07 s to 14.90 ± 0.86 s, with the magnitude of change reported as "moderate" (ES = 0.93). Concurrent improvements were also noted in both SBJ (216.86 cm ± 17.15 vs. 221.71 ± 17.59 cm) and CODS (4.44 ± 0.29 s s. 4.31 ± 0.09 s) and while differences were only significant in SBJ, magnitudes of change were classed as "small" (ES = 0.28) and "moderate" (ES = 0.61)respectively. In conclusion, to improve RLA strength and conditioning coaches should focus on improving lower-body power and reactive strength, noting that jump training and plyometrics designed to enhance horizontal propulsion may be most effective, and translate to improvement in CODS also

    Clinical Nurses\u27 Perspectives on Discharge Practice Changes from Participating in a Translational Research Study

    Get PDF
    Aim To describe clinical nurses\u27 experiences with practice change associated with participation in a multi‐site nursing translational research study implementing new protocols for hospital discharge readiness assessment. Background Nurses\u27 participation in translational research studies provides an opportunity to evaluate how implementation of new nursing interventions affects care processes within a local context. These insights can provide information that leads to successful adoption and sustainability of the intervention. Methods Semi‐structured focus groups from 30 of 33 participating study hospitals lead by team nurse researchers. Results Nurses reported improved and earlier awareness of patients\u27 discharge needs, changes in discharge practices, greater patient/family involvement in discharge, synergy and enhanced discharge processes, and implementation challenges. Participating nurses related the benefits of participation in nursing research. Conclusion Participation in a unit‐level translational research project was a successful strategy for engaging nurses in practice change to improve hospital discharge. Implications for Nursing Management Leading unit‐based implementation of a structured discharge readiness assessment including nurse assessment and patient self‐assessment encourages earlier awareness of patients\u27 discharge needs, improved patient assessment and greater patient/family involvement in discharge preparation. Integrating discharge readiness assessments into existing discharge care promotes communication between health team members that facilitates a timely, coordinated discharge

    Maternal bisphenol and phthalate urine concentrations and weight gain during pregnancy

    Get PDF
    Background: Insufficient or excessive gestational weight gain are associated with increased risks of adverse birth and childhood outcomes. Increasing evidence suggests that exposure to bisphenols and phthalates may disrupt hormonal pathways and thereby influence gestational weight gain. Objective: To examine the associations of early and mid-pregnancy bisphenol and phthalate urine concentrations with gestational weight gain. Methods: In a population-based prospective cohort study among 1,213 pregnant women, we measured early and mid-pregnancy bisphenol and phthalate urine concentrations. Maternal anthropometrics before pregnancy were obtained by questionnaire and repeatedly measure

    Phase diagram of the metal-insulator transition in 2D electronic systems

    Full text link
    We investigated the interdependence of the effects of disorder and carrier correlations on the metal-insulator transition in two-dimensional electronic systems. We present a quantitative metal-insulator phase diagram. Depending on the carrier density we find two different types of metal-insulator transition - a continuous localization for rs=<8 and a discontinuous transition at higher rs. The critical level of disorder at the transition decreases with decreasing carrier density. At very low carrier densities we find that the system is always insulating. The value of the conductivity at the transition is consistent with recent experimental measurements. The self-consistent method which we have developed includes the effects of both disorder and correlations on the transition, using a density relaxation theory with the Coulomb correlations determined from numerical simulation data.Comment: 4 pages, RevTeX + epsf, 5 figures. New comments on conducting phase and on the conductivity. References updated and correcte

    L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass

    Full text link
    We investigate the distribution of single molecule line shape cumulants, Îș1,Îș2,...\kappa_1,\kappa_2,..., in low temperature glasses based on the sudden jump, standard tunneling model. We find that the cumulants are described by L\'evy stable laws, thus generalized central limit theorem is applicable for this problem.Comment: 5 pages, 3 figure

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let
    • 

    corecore