5,523 research outputs found

    Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target

    Get PDF
    We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at timescales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion at upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.Comment: Submitted to Review of Scientific Instrument

    Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow

    Get PDF
    We investigate the existence of multiple turbulent states in highly turbulent Taylor-Couette flow in the range of Ta=1011\mathrm{Ta}=10^{11} to 9â‹…10129\cdot10^{12}, by measuring the global torques and the local velocities while probing the phase space spanned by the rotation rates of the inner and outer cylinder. The multiple states are found to be very robust and are expected to persist beyond Ta=1013\mathrm{Ta}=10^{13}. The rotation ratio is the parameter that most strongly controls the transitions between the flow states; the transitional values only weakly depend on the Taylor number. However, complex paths in the phase space are necessary to unlock the full region of multiple states. Lastly, by mapping the flow structures for various rotation ratios in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before, multiple states were again observed. Here, they are characterized by even richer roll structure phenomena, including, for the first time observed in highly turbulent TC flow, an antisymmetrical roll state.Comment: 9 pages, 7 figure

    Nanometer-Resolved Collective Micromeniscus Oscillations through Optical Diffraction

    Get PDF
    We study the dynamics of periodic arrays of micrometer-sized liquid-gas menisci formed at superhydrophobic surfaces immersed into water. By measuring the intensity of optical diffraction peaks in real time we are able to resolve nanometer scale oscillations of the menisci with sub-microsecond time resolution. Upon driving the system with an ultrasound field at variable frequency we observe a pronounced resonance at a few hundred kHz, depending on the exact geometry. Modeling the system using the unsteady Stokes equation, we find that this low resonance frequency is caused by a collective mode of the acoustically coupled oscillating menisci.Comment: 4 pages, 5 figure

    Periodically kicked turbulence

    Get PDF
    Periodically kicked turbulence is theoretically analyzed within a mean field theory. For large enough kicking strength A and kicking frequency f the Reynolds number grows exponentially and then runs into some saturation. The saturation level can be calculated analytically; different regimes can be observed. For large enough Re we find the saturation level to be proportional to A*f, but intermittency can modify this scaling law. We suggest an experimental realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to better understand the effect of forcing on fully developed turbulence.Comment: 4 pages, 3 figures. Phys. Rev. E., in pres

    Spontaneous Breakdown of Superhydrophobicity

    Get PDF
    In some cases water droplets can completely wet micro-structured superhydrophobic surfaces. The {\it dynamics} of this rapid process is analyzed by ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or -- more interestingly -- in a {\it stepwise} manner, leading to a growing {\it square-shaped} wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ({\it ``zipping''})Comment: Accepted for publication in Physical Review Letter

    Fully developed turbulence and the multifractal conjecture

    Full text link
    We review the Parisi-Frisch MultiFractal formalism for Navier--Stokes turbulence with particular emphasis on the issue of statistical fluctuations of the dissipative scale. We do it for both Eulerian and Lagrangian Turbulence. We also show new results concerning the application of the formalism to the case of Shell Models for turbulence. The latter case will allow us to discuss the issue of Reynolds number dependence and the role played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris

    Sudden Collapse of a Granular Cluster

    Get PDF
    Single clusters in a vibro-fluidized granular gas in N connected compartments become unstable at strong shaking. They are experimentally shown to collapse very abruptly. The observed cluster lifetime (as a function of the driving intensity) is analytically calculated within a flux model, making use of the self-similarity of the process. After collapse, the cluster diffuses out into the uniform distribution in a self-similar way, with an anomalous diffusion exponent 1/3.Comment: 4 pages, 4 figures. Figure quality has been reduced in order to decrease file-siz

    GPCR-OKB: the G protein coupled receptor oligomer knowledge base

    Get PDF
    Rapid expansion of available data about G Protein Coupled Receptor (GPCR) dimers/oligomers over the past few years requires an effective system to organize this information electronically. Based on an ontology derived from a community dialog involving colleagues using experimental and computational methodologies, we developed the GPCR-Oligomerization Knowledge Base (GPCR-OKB). GPCR-OKB is a system that supports browsing and searching for GPCR oligomer data. Such data were manually derived from the literature. While focused on GPCR oligomers, GPCR-OKB is seamlessly connected to GPCRDB, facilitating the correlation of information about GPCR protomers and oligomers

    Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump

    Get PDF
    The discovery of topological states of matter has profoundly augmented our understanding of phase transitions in physical systems. Instead of local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example thereof is the two-dimensional integer quantum Hall effect. It is characterized by the first Chern number which manifests in the quantized Hall response induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional systems leads to the appearance of a novel non-linear Hall response that is quantized as well, but described by a 4D topological invariant - the second Chern number. Here, we report on the first observation of a bulk response with intrinsic 4D topology and the measurement of the associated second Chern number. By implementing a 2D topological charge pump with ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small atom cloud as a local probe, we fully characterize the non-linear response of the system by in-situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probe higher-dimensional quantum Hall systems, where new topological phases with exotic excitations are predicted

    Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    Get PDF
    As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient \beta(T). More precisely, it is the nonlinear T-dependence of the density \rho(T) in the buoyancy force which causes another type of NOB effect. We demonstrate that through a combination of experimental, numerical, and theoretical work, the latter in the framework of the extended Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table
    • …
    corecore