5,527 research outputs found
Embedding generic employability skills in an accounting degree: development and impediments
This paper explores and analyses the views of, and effects on, students of a project that integrated the development of employability skills within the small group classes of two compulsory courses in the first year of an accounting degree at a UK university. The project aimed to build, deliver and evaluate course materials designed to encourage the development of a broad range of employability skills: skills needed for life-long learning and a successful business career. By analysing students' opinions gathered from a series of focus groups spread throughout the year, three prominent skill areas of interest were identified: time management, modelling, and learning to learn. Further analysis highlighted the complex nature of skills development, and brought to light a range of impediments and barriers to both students' development of employability skills and their subject learning. The analysis suggests the need for accounting educators to see skills development as being an essential element of the path to providing a successful accounting education experience
Graphical Encoding of a Spatial Logic for the pi-Calculus
This paper extends our graph-based approach to the verification of spatial properties of π-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of π-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula
An Introduction to Pervasive Interface Automata
Pervasive systems are often context-dependent, component based systems in which components expose interfaces and offer one or more services. These systems may evolve in unpredictable ways, often through component replacement. We present pervasive interface automata as a formalism for modelling components and their composition. Pervasive interface automata are based on the interface automata of Henzinger et al, with several significant differences. We expand their notion of input and output actions to combinations of input, output actions, and callable methods and method calls. Whereas interfaces automata have a refinement relation, we argue the crucial relation in pervasive systems is component replacement, which must include consideration of the services offered by a component and assumptions about the environment. We illustrate pervasive interface autmotata and component replacement with a small case study of a pervasive application for sports predictions
BigraphER: rewriting and analysis engine for bigraphs
BigraphER is a suite of open-source tools providing an effi-
cient implementation of rewriting, simulation, and visualisation for bigraphs,
a universal formalism for modelling interacting systems that
evolve in time and space and first introduced by Milner. BigraphER consists
of an OCaml library that provides programming interfaces for the
manipulation of bigraphs, their constituents and reaction rules, and a
command-line tool capable of simulating Bigraphical Reactive Systems
(BRSs) and computing their transition systems. Other features are native
support for both bigraphs and bigraphs with sharing, stochastic reaction
rules, rule priorities, instantiation maps, parameterised controls, predicate
checking, graphical output and integration with the probabilistic
model checker PRISM
Linguistics
Contains reports on four research projects.National Institutes of Health (Grant MH-13390-01U. S. Air Force (Electronic Systems Division) under Contract AF 19(628)-248
On the Construction of Sorted Reactive Systems
We develop a theory of sorted bigraphical reactive systems. Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand. Here we present a general construction of sortings. The constructed sortings always sustain the behavioural theory of pure bigraphs (in a precise sense), thus obviating the need to redevelop that theory for each new application. As an example, we recover Milner’s local bigraphs as a sorting on pure bigraphs. Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more natural sortings, as witnessed by our recovery of local bigraphs as a sorting
A computational group theoretic symmetry reduction package for the SPIN model checker
Symmetry reduced model checking is hindered by two problems: how to identify state space symmetry when systems are not fully symmetric, and how to determine equivalence of states during search. We present TopSpin, a fully automatic symmetry reduction package for the Spin model checker. TopSpin uses the Gap computational algebra system to effectively detect state space symmetry from the associated Promela specification, and to choose an efficient symmetry reduction strategy by classifying automorphism groups as a disjoint/wreath product of subgroups. We present encouraging experimental results for a variety of Promela examples
One- and two-particle microrheology
We study the dynamics of rigid spheres embedded in viscoelastic media and
address two questions of importance to microrheology. First we calculate the
complete response to an external force of a single bead in a homogeneous
elastic network viscously coupled to an incompressible fluid. From this
response function we find the frequency range where the standard assumptions of
microrheology are valid. Second we study fluctuations when embedded spheres
perturb the media around them and show that mutual fluctuations of two
separated spheres provide a more accurate determination of the complex shear
modulus than do the fluctuations of a single sphere.Comment: 4 pages, 1 figur
SCC: A Service Centered Calculus
We seek for a small set of primitives that might serve as a basis for formalising and programming service oriented applications over global computers. As an outcome of this study we introduce here SCC, a process calculus that features explicit notions of service definition, service invocation and session handling. Our proposal has been influenced by Orc, a programming model for structured orchestration of services, but the SCC’s session handling mechanism allows for the definition of structured interaction protocols, more complex than the basic request-response provided by Orc. We present syntax and operational semantics of SCC and a number of simple but nontrivial programming examples that demonstrate flexibility of the chosen set of primitives. A few encodings are also provided to relate our proposal with existing ones
- …