828 research outputs found

    Associative memory on a small-world neural network

    Full text link
    We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the attractors for all values of the disorder of the network.Comment: 5 pages, 4 figures (eps

    Measuring Input Thresholds on an Existing Board

    Get PDF
    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and temperatures to show that the interface had voltage margin under all worst case conditions. Gate input thresholds are normally measured at the manufacturer when the device is on a chip tester. A key function of this machine was duplicated on an existing flight board with no modifications to the nets to be tested, with the exception of changes in the FPGA program

    Self-Organized Chemical Nanoscale Microreactors

    Get PDF
    Nonequilibrium localized structures of submicrometer and nanometer sizes, carrying the reaction, can spontaneously develop under reaction conditions on a catalytic surface. These self-organized microreactors emerge because of the coupling between the reaction and a structural phase transition in the substrate. The corresponding localized solutions are constructed using the singular perturbation approximation and reproduced in numerical simulations

    Applicability of the Fisher Equation to Bacterial Population Dynamics

    Full text link
    The applicability of the Fisher equation, which combines diffusion with logistic nonlinearity, to population dynamics of bacterial colonies is studied with the help of explicit analytic solutions for the spatial distribution of a stationary bacterial population under a static mask. The mask protects the bacteria from ultraviolet light. The solution, which is in terms of Jacobian elliptic functions, is used to provide a practical prescription to extract Fisher equation parameters from observations and to decide on the validity of the Fisher equation.Comment: 5 pages, 3 figs. include

    Correlation effects in a simple model of small-world network

    Full text link
    We analyze the effect of correlations in a simple model of small world network by obtaining exact analytical expressions for the distribution of shortest paths in the network. We enter correlations into a simple model with a distinguished site, by taking the random connections to this site from an Ising distribution. Our method shows how the transfer matrix technique can be used in the new context of small world networks.Comment: 10 pages, 3 figure

    Opinion and community formation in coevolving networks

    Full text link
    In human societies opinion formation is mediated by social interactions, consequently taking place on a network of relationships and at the same time influencing the structure of the network and its evolution. To investigate this coevolution of opinions and social interaction structure we develop a dynamic agent-based network model, by taking into account short range interactions like discussions between individuals, long range interactions like a sense for overall mood modulated by the attitudes of individuals, and external field corresponding to outside influence. Moreover, individual biases can be naturally taken into account. In addition the model includes the opinion dependent link-rewiring scheme to describe network topology coevolution with a slower time scale than that of the opinion formation. With this model comprehensive numerical simulations and mean field calculations have been carried out and they show the importance of the separation between fast and slow time scales resulting in the network to organize as well-connected small communities of agents with the same opinion.Comment: 10 pages, 5 figures. New inset for Fig. 1 and references added. Submitted to Physical Review

    State of the science and the way forward for the ecotoxicological assessment of contaminated land.

    Get PDF
    Durante as últimas duas décadas, ecotoxicologistas de solo têm feito progressos ao utilizar conceitos básicos e avanços da zoologia e ecologia do solo. Os métodos existentes têm sido aplicados, e têm-se desenvolvido novas ferramentas para avaliar de que modo a contaminação química pode afetar o ecossistema terrestre, inclusive pela degradação ou destruição da qualidade do solo e dos habitats ou pela redução da biodiversidade edáfica. Os ecotoxicologistas de solo utilizam um conjunto de protocolos padronizados, originalmente desenvolvidos como testes de laboratório com compostos químicos simples como os pesticidas e, posteriormente, adaptados em termos de abordagens e métodos, para a avaliação de áreas contaminadas. No entanto, a relevância ecológica de algumas abordagens permanece questionável. Neste artigo, os autores discutem os recentes desafios para uma avaliação ecotoxicológica coerente do ecossistema solo em áreas contaminadas e apresentam recomendações de como integrar os efeitos das propriedades físicoquímicas do solo, as variações na diversidade de invertebrados do solo e, as interações entre organismos dos vários níveis tróficos. São analisadas novas abordagens e métodos de avaliação, usando-se exemplos de três continentes (particularmente o trabalho desenvolvido no Brasil), e são dadas recomendações de como aumentar a relevância ecológica na avaliação ecotoxicológica de áreas contaminadas

    Entropic sampling dynamics of the globally-coupled kinetic Ising model

    Full text link
    The entropic sampling dynamics based on the reversible information transfer to and from the environment is applied to the globally coupled Ising model in the presence of an oscillating magnetic field. When the driving frequency is low enough, coherence between the magnetization and the external magnetic field is observed; such behavior tends to weaken with the system size. The time-scale matching between the intrinsic time scale, defined in the absence of the external magnetic field, and the extrinsic time scale, given by the inverse of the driving frequency, is used to explain the observed coherence behavior.Comment: 8 page
    corecore