136 research outputs found

    Discrete and Continuous Caching Games

    Full text link
    Alpern's Caching Game is played by 22 players. Player 11 is a squirrel, who is hiding his dd nuts in nn different holes, with the restriction that he can only dig down a distance of 11 metre altogether. After that, Player 22 wants to find all the nuts, and she is allowed to dig down a distance of kk metres altogether. Player 22 wins after finding all the nuts, if she fails then the squirrel wins. We investigate a discrete version of the game, finding strategies and statements for both smaller and general values of n,d,kn,d,k. In particular, we answer a question of P\'alv\"olgyi, by exhibiting an example, where the value of the game can change depending on which nut the squirrel reveals, when he has multiple options in the discrete game. We also investigate and invent other continuous versions of the game, one of them having a connection to the Manickam-Mikl\'os-Singhi Conjecture.Comment: 22 pages, 8 figure

    Polymorphisms of CSF1 and TM7SF4 genes in a case of mild juvenile Paget's disease found using next-generation sequencing

    Get PDF
    Juvenile Paget's disease (JPD) is a rare autosomal-recessive condition. It is diagnosed in young children and characterized by a generalized increase in bone turnover, bone pain, and skeletal deformity. Our patient was diagnosed after a pathological fracture when she was 11 years old. When we first examined her at the age of 30 she had bone pain and deformity in both the femur and tibia. Serum alkaline phosphatase (ALP) level, radiology, bone scintigraphy, and densitometry were monitored. Next generation sequencing (NGS) technology, namely semiconductor sequencing, was used to determine the genetic background of JPD. Seven target genes and regions were selected and analyzed after literature review (TM7SF4, SQSTM1, TNFRSF11A, TNFRSF11B, OPTN, CSF1, VCP). No clear pathogenic mutation was found, but we detected missense polymorphisms in CSF1 and TM7SF4 genes. After treatment with zoledronic acid, infusion bone pain and ALP level decreased. We can conclude that intravenous zoledronic acid therapy is effective and safe for suppressing bone turnover and improving symptoms in JPD, but the long-term effects on clinical outcomes are unclear. Our findings also suggest that NGS may help explore the pathogenesis and aid the diagnosis of JPD

    Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS

    Get PDF
    In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to “drain” out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions

    Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca2+ sensor to canine cardiomyocytes

    Get PDF
    We report the development and application of a pseudorabies virus-based system for delivery of troponeon, a fluorescent Ca2+ sensor to adult canine cardiomyocytes. The efficacy of transduction was assessed by calculating the ratio of fluorescently labelled and nonlabelled cells in cell culture. Interaction of the virus vector with electrophysiological properties of cardiomyocytes was evaluated by the analysis of transient outward current (Ito), kinetics of the intracellular Ca2+ transients, and cell shortening. Functionality of transferred troponeon was verified by FRET analysis. We demonstrated that the transfer efficiency of troponeon to cultured adult cardiac myocytes was virtually 100%. We showed that even after four days neither the amplitude nor the kinetics of the Ito current was significantly changed and no major shifts occurred in parameters of [Ca2+]i transients. Furthermore, we demonstrated that infection of cardiomyocytes with the virus did not affect the morphology, viability, and physiological attributes of cells

    Q50, an Iron-Chelating and Zinc-Complexing Agent, Improves Cardiac Function in Rat Models of Ischemia/Reperfusion-Induced Myocardial Injury

    Get PDF
    Background: Reperfusion of ischemic myocardium may contribute to substantial cardiac tissue damage, but the addition of iron chelators, zinc or zinc complexes has been shown to prevent heart from reperfusion injury. We investigated the possible beneficial effects of an iron-chelating and zinc-complexing agent, Q50, in rat models of ischemia/reperfusion (I/R)-induced myocardial infarction and on global reversible myocardial I/R injury after heart transplantation. Methods and Results: Rats underwent 45-min myocardial ischemia by left anterior descending coronary artery ligation followed by 24h reperfusion. Vehicle or Q50 (10mg/kg, IV) were given 5min before reperfusion. In a heart transplantation model, donor rats received vehicle or Q50 (30mg/kg, IV) 1h before the onset of ischemia. In myocardial infarcted rats, increased left ventricular end-systolic and end-diastolic volumes were significantly decreased by Q50 post treatment as compared with the sham group. Moreover, in I/R rat hearts, the decreased dP/dtmax and load-independent contractility parameters were significantly increased after Q50. However, Q50 treatment did not reduce infarct size or have any effect on increased plasma cardiac troponin-T-levels. In the rat model of heart transplantation, 1h after reperfusion, decreased left ventricular systolic pressure, dP/dtmax, dP/dtmin and myocardial ATP content were significantly increased and myocardial protein expression of superoxide dismutase-1 was upregulated after Q50 treatment. Conclusions: In 2 experimental models of I/R, administration of Q50 improved myocardial function. Its mechanisms of action implicate in part the restoration of myocardial high-energy phosphates and upregulation of antioxidant enzymes.  (Circ J 2013; 77: 1817–1826

    Diclofenac Prolongs Repolarization in Ventricular Muscle with Impaired Repolarization Reserve

    Get PDF
    Background: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti- inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle. Methods: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model. Results: Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 mM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl 2 application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 mg/kg) significantly lengthened the QT c interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QT c . Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 mM) decreased the amplitude of rapid (I Kr ) and slow (I Ks ) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (I Ca ) was slightly diminished, but the transient outward (I to ) and inward rectifier (I K1 ) potassium currents were not influenced. Conclusions: Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve

    The effect of COVID-19 vaccination status on all-cause mortality in patients hospitalised with COVID-19 in Hungary during the delta wave of the pandemic

    Get PDF
    The high mortality of patients with coronavirus disease 2019 (COVID-19) is effectively reduced by vaccination. However, the effect of vaccination on mortality among hospitalised patients is under-researched. Thus, we investigated the effect of a full primary or an additional booster vaccination on in-hospital mortality among patients hospitalised with COVID-19 during the delta wave of the pandemic. This retrospective cohort included all patients (n = 430) admitted with COVID-19 at Semmelweis University Department of Medicine and Oncology in 01/OCT/2021–15/DEC/2021. Logistic regression models were built with COVID-19-associated in-hospital/30 day-mortality as outcome with hierarchical entry of predictors of vaccination, vaccination status, measures of disease severity, and chronic comorbidities. Deceased COVID-19 patients were older and presented more frequently with cardiac complications, chronic kidney disease, and active malignancy, as well as higher levels of inflammatory markers, serum creatinine, and lower albumin compared to surviving patients (all p < 0.05). However, the rates of vaccination were similar (52–55%) in both groups. Based on the fully adjusted model, there was a linear decrease of mortality from no/incomplete vaccination (ref) through full primary (OR 0.69, 95% CI: 0.39–1.23) to booster vaccination (OR 0.31, 95% CI 0.13–0.72, p = 0.006). Although unadjusted mortality was similar among vaccinated and unvaccinated patients, this was explained by differences in comorbidities and disease severity. In adjusted models, a full primary and especially a booster vaccination improved survival of patients hospitalised with COVID-19 during the delta wave of the pandemic. Our findings may improve the quality of patient provider discussions at the time of admission
    corecore