253 research outputs found

    Domains of holomorphy for irreducible unitary representations of simple Lie groups

    Full text link
    We classify the domains of holomorphy of all Harish-Chandra modules of irreducible unitary representations of simple non-compact Lie groups.Comment: revised version, to appear in Invent. math., 14 page

    Quintics with Finite Simple Symmetries

    Full text link
    We construct all quintic invariants in five variables with simple Non-Abelian finite symmetry groups. These define Calabi-Yau three-folds which are left invariant by the action of A_5, A_6 or PSL_2(11).Comment: 18 pages, typos corrected, matches published versio

    Fundamental Weights, Permutation Weights and Weyl Character Formula

    Full text link
    For a finite Lie algebra GNG_N of rank N, the Weyl orbits W(Λ++)W(\Lambda^{++}) of strictly dominant weights Λ++\Lambda^{++} contain dimW(GN)dimW(G_N) number of weights where dimW(GN)dimW(G_N) is the dimension of its Weyl group W(GN)W(G_N). For any W(Λ++)W(\Lambda^{++}), there is a very peculiar subset (Λ++)\wp(\Lambda^{++}) for which we always have dim(Λ++)=dimW(GN)/dimW(AN1). dim\wp(\Lambda^{++})=dimW(G_N)/dimW(A_{N-1}) . For any dominant weight Λ+ \Lambda^+ , the elements of (Λ+)\wp(\Lambda^+) are called {\bf Permutation Weights}. It is shown that there is a one-to-one correspondence between elements of (Λ++)\wp(\Lambda^{++}) and (ρ)\wp(\rho) where ρ\rho is the Weyl vector of GNG_N. The concept of signature factor which enters in Weyl character formula can be relaxed in such a way that signatures are preserved under this one-to-one correspondence in the sense that corresponding permutation weights have the same signature. Once the permutation weights and their signatures are specified for a dominant Λ+\Lambda^+, calculation of the character ChR(Λ+)ChR(\Lambda^+) for irreducible representation R(Λ+)R(\Lambda^+) will then be provided by ANA_N multiplicity rules governing generalized Schur functions. The main idea is again to express everything in terms of the so-called {\bf Fundamental Weights} with which we obtain a quite relevant specialization in applications of Weyl character formula.Comment: 6 pages, no figures, TeX, as will appear in Journal of Physics A:Mathematical and Genera

    Special functions associated to a certain fourth order differential equation

    Full text link
    We develop a theory of "special functions" associated to a certain fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} on R\mathbb{R} depending on two parameters μ,ν\mu,\nu. For integers μ,ν1\mu,\nu\geq-1 with μ+ν2N0\mu+\nu\in2\mathbb{N}_0 this operator extends to a self-adjoint operator on L2(R+,xμ+ν+1dx)L^2(\mathbb{R}_+,x^{\mu+\nu+1}dx) with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, L2L^2-norms, integral representations and various recurrence relations. This fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} arises as the radial part of the Casimir action in the Schr\"odinger model of the minimal representation of the group O(p,q)O(p,q), and our "special functions" give KK-finite vectors

    Symplectic connections and Fedosov's quantization on supermanifolds

    Full text link
    A (biased and incomplete) review of the status of the theory of symplectic connections on supermanifolds is presented. Also, some comments regarding Fedosov's technique of quantization are made.Comment: Submitted to J. of Phys. Conf. Se

    Formal Hecke algebras and algebraic oriented cohomology theories

    Full text link
    In the present paper we generalize the construction of the nil Hecke ring of Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory of Levine-Morel and Panin-Smirnov, e.g. to Chow groups, Grothendieck's K_0, connective K-theory, elliptic cohomology, and algebraic cobordism. The resulting object, which we call a formal (affine) Demazure algebra, is parameterized by a one-dimensional commutative formal group law and has the following important property: specialization to the additive and multiplicative periodic formal group laws yields completions of the nil Hecke and the 0-Hecke rings respectively. We also introduce a deformed version of the formal (affine) Demazure algebra, which we call a formal (affine) Hecke algebra. We show that the specialization of the formal (affine) Hecke algebra to the additive and multiplicative periodic formal group laws gives completions of the degenerate (affine) Hecke algebra and the usual (affine) Hecke algebra respectively. We show that all formal affine Demazure algebras (and all formal affine Hecke algebras) become isomorphic over certain coefficient rings, proving an analogue of a result of Lusztig.Comment: 28 pages. v2: Some results strengthened and references added. v3: Minor corrections, section numbering changed to match published version. v4: Sign errors in Proposition 6.8(d) corrected. This version incorporates an erratum to the published versio

    Vector coherent state representations, induced representations, and geometric quantization: II. Vector coherent state representations

    Get PDF
    It is shown here and in the preceeding paper (quant-ph/0201129) that vector coherent state theory, the theory of induced representations, and geometric quantization provide alternative but equivalent quantizations of an algebraic model. The relationships are useful because some constructions are simpler and more natural from one perspective than another. More importantly, each approach suggests ways of generalizing its counterparts. In this paper, we focus on the construction of quantum models for algebraic systems with intrinsic degrees of freedom. Semi-classical partial quantizations, for which only the intrinsic degrees of freedom are quantized, arise naturally out of this construction. The quantization of the SU(3) and rigid rotor models are considered as examples.Comment: 31 pages, part 2 of two papers, published versio

    Orthogonal Decomposition of Some Affine Lie Algebras in Terms of their Heisenberg Subalgebras

    Full text link
    In the present note we suggest an affinization of a theorem by Kostrikin et.al. about the decomposition of some complex simple Lie algebras G{\cal G} into the algebraic sum of pairwise orthogonal Cartan subalgebras. We point out that the untwisted affine Kac-Moody algebras of types Apm1A_{p^m-1} (pp prime, m1m\geq 1), Br,C2m,Dr,G2,E7,E8B_r, \, C_{2^m}, D_r,\, G_2,\, E_7,\, E_8 can be decomposed into the algebraic sum of pairwise or\-tho\-go\-nal Heisenberg subalgebras. The Apm1A_{p^m-1} and G2G_2 cases are discussed in great detail. Some possible applications of such decompositions are also discussed.Comment: 16 pages, LaTeX, no figure

    Small oscillations and the Heisenberg Lie algebra

    Full text link
    The Adler Kostant Symes [A-K-S] scheme is used to describe mechanical systems for quadratic Hamiltonians of R2n\mathbb R^{2n} on coadjoint orbits of the Heisenberg Lie group. The coadjoint orbits are realized in a solvable Lie algebra g\mathfrak g that admits an ad-invariant metric. Its quadratic induces the Hamiltonian on the orbits, whose Hamiltonian system is equivalent to that one on R2n\mathbb R^{2n}. This system is a Lax pair equation whose solution can be computed with help of the Adjoint representation. For a certain class of functions, the Poisson commutativity on the coadjoint orbits in g\mathfrak g is related to the commutativity of a family of derivations of the 2n+1-dimensional Heisenberg Lie algebra hn\mathfrak h_n. Therefore the complete integrability is related to the existence of an n-dimensional abelian subalgebra of certain derivations in hn\mathfrak h_n. For instance, the motion of n-uncoupled harmonic oscillators near an equilibrium position can be described with this setting.Comment: 17 pages, it contains a theory about small oscillations in terms of the AKS schem
    corecore