3,273 research outputs found

    Characterisation of an aperture-stacked patch antenna for ultra-wideband wearable radio systems

    Get PDF
    This paper presents, for the first time, the time-domain characteristics of an aperture-stacked patch antenna (ASPA) for ultra-wideband (UWB) wearable devices. The methodology of antennas characterization for UWB radio systems is also outlined. The antenna operates within the 3-6 GHz frequency band. Time- and frequency-domain characteristics of this antenna are presented in transmission mode (Tx), receiving mode (Rx) and for 2-antenna (Tx-Rx) system. The pulse driving the antenna has duration of 0.65 ns. In the Tx mode, pulses radiated in different directions of the H-plane have very similar shapes. Fidelity factors are as high as 91.6-99.9%. For 2-antenna system, pulses received in normal and end-fire-like directions have the fidelity of 69.5%. As it was found, antenna does not behave "reciprocal" comparing Tx and Rx modes. For normal propagation direction, radiated pulse is the 2nd derivative of the input waveform, but in the Rx mode, received pulse is the 1st derivative of the incident plane wave. This antenna can be used for transmission of short-pulses, even 0.65-1 ns in duration. It is also small (patch planar dimensions 32/19 mm) and compact. Microstrip configuration allows further integration of active devices on the same board. Taking into account above results we can say that ASPA is a good candidate for UWB non-invasive wireless body area network (WBAN) applications

    Textile UWB antennas for wireless body area networks

    Get PDF

    Theory of Coherent cc-Axis Josephson Tunneling between Layered Superconductors

    Full text link
    We calculate exactly the Josephson current for cc-axis coherent tunneling between two layered superconductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling Hamiltonian. Our results are also correct for strong tunneling. However, the cc-axis tunneling results of Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we consider the cc-axis coherent critical current between two identical layered superconductors twisted an angle ϕ0\phi_0 about the cc-axis with respect to each other. Regardless of the order parameter symmetry, our coherent tunneling results using a tight-binding intralayer quasiparticle dispersion are inconsistent with the recent cc-axis twist bicrystal Bi2_2Sr2_2CaCu2_2O8+ÎŽ_{8+\delta} twist junction experiments of Li {\it et al.}Comment: 11 pages, 13 figures, submitted to Physical Review

    Vortex Lines or Vortex-Line Chains at the Lower Critical Field in Anisotropic Superconductors?

    Full text link
    The vortex state at the lower critical field, H_{c1}, in clean anisotropic superconductors placed in an external field tilted with respect to the axis of anisotropy (c-axis) is considered assuming two possible arrangements: dilute vortex-lines or dilute vortex-line chains. By minimizing the Gibbs free energies in the London limit for each possibility we obtain the corresponding lower critical fields as a function of the tilt angle. The equilibrium configuration at H_{c1} for a given tilt angle is identified with that for which H_{c1} is the smallest. We report results for parameter values typical of strong and moderate anisotropy. We find that for strong anisotropy vortex-line chains are favored for small tilt angles (< 7.9^o) and that at 7.9^o there is coexistence between this configuration and a vortex-line one. For moderate anisotropy we find that there is little difference between the vortex-line and the vortex-chain lower critical fields.Comment: 5 pages, 4 figures, accepted to appear on Physica

    First Law, Counterterms and Kerr-AdS_5 Black Holes

    Full text link
    We apply the counterterm subtraction technique to calculate the action and other quantities for the Kerr--AdS black hole in five dimensions using two boundary metrics; the Einstein universe and rotating Einstein universe with arbitrary angular velocity. In both cases, the resulting thermodynamic quantities satisfy the first law of thermodynamics. We point out that the reason for the violation of the first law in previous calculations is that the rotating Einstein universe, used as a boundary metric, was rotating with an angular velocity that depends on the black hole rotation parameter. Using a new coordinate system with a boundary metric that has an arbitrary angular velocity, one can show that the resulting physical quantities satisfy the first law.Comment: 19 pages, 1 figur

    Comment on "c-axis Josephson tunneling in Dx2−y2D_{x^2-y^2}-wave superconductors''

    Full text link
    This comment points out that the recent paper by Maki and Haas [Phys. Rev. B {\bf 67}, 020510 (2003)] is completely wrong.Comment: 1 page, submittted to Phys. Rev.

    Josephson (001) tilt grain boundary junctions of high temperature superconductors

    Full text link
    We calculate the critical current IcI_c across in-plane (001) tilt grain boundary junctions of high temperature superconductors. We solve for the electronic states corresponding to the electron-doped cuprates, two slightly different hole-doped cuprates, and an extremely underdoped hole-doped cuprate in each half-space, and weakly connect the two half-spaces by either specular or random quasiparticle tunneling. We treat symmetric, straight, and fully asymmetric junctions with s-, extended-s-, or dx2−y2_{x^2-y^2}-wave order parameters. For symmetric junctions with random grain boundary tunneling, our results are generally in agreement with the Sigrist-Rice form for ideal junctions that has been used to interpret ``phase-sensitive'' experiments consisting of such in-plane grain boundary junctions. For specular grain boundary tunneling across symmetric juncitons, our results depend upon the Fermi surface topology, but are usually rather consistent with the random facet model of Tsuei {\it et al.} [Phys. Rev. Lett. {\bf 73}, 593 (1994)]. Our results for asymmetric junctions of electron-doped cuparates are in agreement with the Sigrist-Rice form. However, ou resutls for asymmetric junctions of hole-doped cuprates show that the details of the Fermi surface topology and of the tunneling processes are both very important, so that the ``phase-sensitive'' experiments based upon the in-plane Josephson junctions are less definitive than has generally been thought.Comment: 13 pages, 10 figures, resubmitted to PR

    Summertime partitioning and budget of NOycompounds in the troposphere over Alaska and Canada: ABLE 3B

    Get PDF
    As part of NASA's Arctic Boundary Layer Expedition 3A and 3B field measurement programs, measurements of NO(x) HNO31, PAN, PPN, and NOy were made in the middle to lower troposphere over Alaska and Canada during the summers of 1988 and 1990. These measurements are used to assess the degree of closure within the reactive odd nitrogen (NxOy) budget through the comparison of the values of NOy measured with a catalytic convertor to the sum of individually measured NOy(i) compounds (i.e., Sigma NOy(i) = NOx + HNO3 + PAN + PPN). Significant differences were observed between the various study regions. In the lower 6 km of the troposphere over Alaska and the Hudson Bay lowlands of Canada a significant traction of the NOy budget (30 to 60 per cent) could not be accounted for by the measured Sigma NOy(i). This deficit in the NOy budget is about 100 to 200 parts per trillion by volume (pptv) in the lower troposphere (0.15 to 3 km) and about 200 to 400 pptv in the middle free troposphere (3 to 6.2 km). Conversely, the NOy budget in the northern Labrador and Quebec regions or Canada is almost totally accounted for within the combined measurement uncertainties of NOy and the various NOy(i) compounds. A substantial portion of the NOx budget's 'missing compounds' appears to be coupled to the photochemical and/or dynamical parameters influencing the tropospheric oxidative potential over these regions. A combination of factors are suggested as the causes for the variability observed in the NOy budget. In addition, the apparent stability of compounds represented by the NOy budget deficit in the lower-attitude range questions the ability of these compounds to participate as reversible reservoirs for "active" odd nitrogen and suggest that some portion of the NOy budget may consist of relatively unreactive nitrogencontaining compounds. Bei der Rationalisierung von Kommissioniersystemen besteht bei vielen Unternehmen noch Nachholbedarf. Dies ergab eine Umfrage des Fraunhofer-Instituts fĂŒr Materialfluss und Logistik in Dortmund bei ca. 800 Unternehmen. Keins der Unternehmen setzt Kommissionierautomaten ein, die Voraussetzungen fĂŒr durchgehende Automatisierung fehlen
    • 

    corecore