9,770 research outputs found

    Adaptive route selection for dynamic route guidance system based on fuzzy-neural approaches

    Get PDF
    The objective of this work is to model the driver behaviour in the area of route selection. The research focus on an optimum route search function in a typical in-car navigation system or dynamic route guidance (DRG) system. In this work, we want to emphasize the need to orientate the route selection method on the driver's preference. Each route candidate has a set of attributes. A fuzzy-neural approach is used to represent the correlation of the attributes with the driver's route selection. A recommendation or route ranking can be provided to the driver. Based on a training of the fuzzy-neural net on the driver's choice, the route selection function can be made adaptive to the decision-making of the driver.published_or_final_versio

    Analytic Lifshitz black holes in higher dimensions

    Get PDF
    We generalize the four-dimensional R^2-corrected z=3/2 Lifshitz black hole to a two-parameter family of black hole solutions for any dynamical exponent z and for any dimension D. For a particular relation between the parameters, we find the first example of an extremal Lifshitz black hole. An asymptotically Lifshitz black hole with a logarithmic decay is also exhibited for a specific critical exponent depending on the dimension. We extend this analysis to the more general quadratic curvature corrections for which we present three new families of higher-dimensional D>=5 analytic Lifshitz black holes for generic z. One of these higher-dimensional families contains as critical limits the z=3 three-dimensional Lifshitz black hole and a new z=6 four-dimensional black hole. The variety of analytic solutions presented here encourages to explore these gravity models within the context of non-relativistic holographic correspondence.Comment: 14 page

    CURE: Flexible Categorical Data Representation by Hierarchical Coupling Learning

    Full text link
    © 1989-2012 IEEE. The representation of categorical data with hierarchical value coupling relationships (i.e., various value-to-value cluster interactions) is very critical yet challenging for capturing complex data characteristics in learning tasks. This paper proposes a novel and flexible coupled unsupervised categorical data representation (CURE) framework, which not only captures the hierarchical couplings but is also flexible enough to be instantiated for contrastive learning tasks. CURE first learns the value clusters of different granularities based on multiple value coupling functions and then learns the value representation from the couplings between the obtained value clusters. With two complementary value coupling functions, CURE is instantiated into two models: coupled data embedding (CDE) for clustering and coupled outlier scoring of high-dimensional data (COSH) for outlier detection. These show that CURE is flexible for value clustering and coupling learning between value clusters for different learning tasks. CDE embeds categorical data into a new space in which features are independent and semantics are rich. COSH represents data w.r.t. an outlying vector to capture complex outlying behaviors of objects in high-dimensional data. Substantial experiments show that CDE significantly outperforms three popular unsupervised encoding methods and three state-of-the-art similarity measures, and COSH performs significantly better than five state-of-the-art outlier detection methods on high-dimensional data. CDE and COSH are scalable and stable, linear to data size and quadratic to the number of features, and are insensitive to their parameters

    Black holes and black branes in Lifshitz spacetimes

    Full text link
    We construct analytic solutions describing black holes and black branes in asymptotically Lifshitz spacetimes with arbitrary dynamical exponent z and for arbitrary number of dimensions. The model considered consists of Einstein gravity with negative cosmological constant, a scalar, and N U(1) gauge fields with dilatonic-like couplings. We study the phase diagrams and thermodynamic instabilities of the solution, and find qualitative differences between the cases with 12.Comment: 27 pages, 10 figures; v2 references added, minor comments adde

    Experimental Polarization State Tomography using Optimal Polarimeters

    Full text link
    We report on the experimental implementation of a polarimeter based on a scheme known to be optimal for obtaining the polarization vector of ensembles of spin-1/2 quantum systems, and the alignment procedure for this polarimeter is discussed. We also show how to use this polarimeter to estimate the polarization state for identically prepared ensembles of single photons and photon pairs and extend the method to obtain the density matrix for generic multi-photon states. State reconstruction and performance of the polarimeter is illustrated by actual measurements on identically prepared ensembles of single photons and polarization entangled photon pairs

    Quantum integrable system with two color components in two dimensions

    Full text link
    The Davey-Stewartson 1(DS1) system[9] is an integrable model in two dimensions. A quantum DS1 system with 2 colour-components in two dimensions has been formulated. This two-dimensional problem has been reduced to two one-dimensional many-body problems with 2 colour-components. The solutions of the two-dimensional problem under consideration has been constructed from the resulting problems in one dimensions. For latters with the δ\delta -function interactions and being solved by the Bethe ansatz, we introduce symmetrical and antisymmetrical Young operators of the permutation group and obtain the exact solutions for the quantum DS1 system. The application of the solusions is discussed.Comment: 14 pages, LaTeX fil
    corecore