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Adaptive Route Selection for Dynamic
Route Guidance System Based on

Fuzzy-Neural Approaches
Grantham K. H. Pang,Member, IEEE,Kazunori Takahashi, Takayoshi Yokota,Member, IEEE,and Hiroshi Takenaga

Abstract—One functionality of an in-vehicle navigation system
is route planning. Given a set of origin–destination (O/D) pairs,
there could be many possible routes for a driver. A useful routing
system should have the capability to support the driver effectively
in deciding on an optimum route to his preference. The objective
of this work is to model the driver behavior in the area of route
selection. In particular, the research focuses on an optimum route
search function in a typical in-car navigation system or dynamic
route guidance (DRG) system. In this work, we want to emphasize
the need to orientate the route selection method on the driver’s
preference. Each feasible route has a set of attributes. A fuzzy-
neural (FN) approach is used to represent the correlation of the
attributes with the driver’s route selection. A recommendation or
route ranking can be provided to the driver. Based on a training
of the FN net on the driver’s choice, the route selection function
can be made adaptive to the decision making of the driver.

I. INTRODUCTION

W ITH THE recent developments of advanced technolo-
gies, which includes communications, microelectron-

ics, sensors, and information technology, the provision of
real-time information on traffic conditions to drivers has
become technically possible. For example, measurement of
queue length and traffic flow in a traffic network can be
obtained from inductive loop detectors or TV camera for
surveillance. Information on the degree of congestion and
estimated travel time can be collected by a traffic control
center like Vehicle Information and Communication System
Center (VICS), which started operation in Japan in 1996.
VICS is an advanced information system designed to send
real-time data on traffic jams, travel time, accidents, and road
restrictions to in-vehicle units. The real-time road traffic data
and information are gathered by the VICS Center and then
distributed by radio wave and infrared beacons installed at
every major road junction in the Tokyo and Osaka areas. The
service area will gradually extend to the highways and other
areas. Thus, the new navigation systems will be able to utilize
the real-time traffic information by simply adding a receiver.

One functionality of an in-vehicle navigation system is route
planning. Here, we represent a road network in the form of
nodes (representing junctions) and a set of links (representing
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roads). Given an origin–destination (O/D) pair, there could be
many possible routes through the network. Generally, the cost
functions are related to the links, which could be reflected by
the travel time, distance, cost of travel, etc. The problem is
understanding the complex evaluation process involved in the
route choice and implementing a route selection function for
the in-vehicle guidance system.

A route guidance system is a routing system that provides
instructions to drivers based upon “optimum” route solutions.
A driver can make the destination known to the system. The
origin can be input or obtained directly from the use of a
differential global positioning system (DGPS). A dynamic
route guidance (DRG) system would route drivers using the
current traffic conditions such as congestion and roadworks.
The system can then provide actual routing advice based on
real-time information regarding conditions and incidents of
the traffic network.

One objective of such a dynamic route guidance system
is to balance the level of service on all major network links
so as to increase the efficiency, speed, safety and quality of
travel (e.g., to minimize travel time). Such a system would
be particularly useful when accidents or roadworks occurred
in the traffic network. Also, the system is highly beneficial to
the motorist when driving in unfamiliar areas. A DRG system
would act as the driver’s assistant and try to reduce his tension.

The issue of driver behavior in terms of route choice and
response to guidance is complex. One focus in this paper is on
the modeling of driver behavior in route choice on the DRG
system. Here, we assume that the DRG system has a voluntary
choice scheme and the driver has the option of not following
the advice from the DRG system. The driver’s preference is
modeled as a fuzzy expert system, and his reaction to the
advice and information provided by a DRG system is stored.
The previous choices of the driver, in particular the deviation
from the recommendation of the system, are then used for
training so that the route selection function is made adaptive
to the driver’s preference.

A. Literature Review

The study on route choice has been under the topic of
traffic assignment. To solve the traffic assignment problem,
the rule by which drivers choose routes between their origin
and destination of travel must be defined. Van Vuren and
Van Vliet [1] assumed that every driver wishes to minimize
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his personal travel cost. They have also assumed that time
minimization is the only criterion for the driver’s route choice.
A more comprehensive study on this topic is by Bovy and
Stern [2]. They have identified a number of factors related
to route selection and they fall into four categories: the
characteristics/attributes of the feasible routes, the character
of the traveler, the nature of that particular trip (e.g., purpose,
budget), and other circumstances (e.g., weather, day/night).
One study of route choice factors among truck drivers on
motorways in Austria has come up with the following order
of importance: travel time, width of the road, travel distance,
route angularity, probability of delays, dangerous segments,
slope of the road, multilanes, road safety, expected weather,
and traffic density on the road.

As mentioned in [2], studies have revealed that people’s
preferences for various route characteristics do vary, and
variables can be related to the characteristics of the travelers,
their trips, and the routes to which they have been exposed.
The difference seemed to be related to the great importance
of direct/quick access to the destination in work trips, and
importance of amenities (comfort/pleasant scenery) in leisurely
trips. For example, scenery was found the most important
noneconomic factor in shopping trips.

So far, the idea of “optimum” has been taken in a very
limited sense. Most route guidance systems nowadays compute
the “best” route for the driver based on either the shortest
time [3], [4] or the shortest distance [5]. Some systems
would provide information on congestion of the road as well
[6]. Hence, the route selection function makes use of the
distance data (static) and information on average travel speed
(dynamic). In the VICS project announced by the National
Police Agency in 1991,optimum route selectionwas a focus,
but the focus was based only on travel distance and travel
time reduction based on empirical and real-time information.
Also, it was not clear how the two criteria can be resolved
or compromised to give the optimum route. For example, in
the driver’s route selection logic in [7], it is not clear how
to tradeoff the relative importance of minimum distance route
and minimum time route.

From a survey carried out in 1989 [8], respondents were
asked to choose between guidance systems that chose routes
on the basis of shortest time, shortest distance or some
combination of the two. In London, 42% of the respondents
would prefer a system that can perform a tradeoff between
travel time and travel distance. 56% said they would choose
route based on the shortest travel time. A similar result is
obtained in Paris. In Munich, 71% would prefer a tradeoff
between travel time and travel distance, and only 27% would
choose route based just on the shortest travel time. Therefore, it
can be observed that a routing algorithm that can accommodate
the various route selection criteria and their tradeoff would be
highly desirable.

The use of fuzzy logic methodology in route selection was
first proposed by Teodorovic and Kikuchi [9]. They have
looked at the problem of route choice between two alternate
routes. The driver’s perceived travel time on each route is
treated as a fuzzy number, and his choice of route is based
on an approximate reasoning model and fuzzy inference. The
model consists of rules which indicate the degree of preference
for each route given the approximate travel time of the two
routes. The approach considers only the travel time criterion
and cannot be easily generalized to multiple routes.

Lotan and Koutsopoulos [10] have also proposed a modeling
framework for route choice based on fuzzy set theory and
approximate reasoning. The approach is based on the driver’s
perception of attributes of the network, attractiveness of alter-
nate routes as well as models for reaction to information. An
example of a fuzzy rule is given at the bottom of the page.

Such an approach works for a particular O/D set and does
not seem general enough for different O/D pairs. Also, for an
O/D pair, the inclusion of an additional feasible route means
an entirely new set of fuzzy rules.

Teodorovic and Kalic [11] have considered route choice
problem in air transportation using fuzzy logic. Other than
travel time, the approach can handle additional route selection
criteria such as travel costs, flight frequency, and the number
of stopovers. However, the method works well when there
are two possible routes (A and B) from the origin to the
destination. An example of a fuzzy rule is given at the bottom
of the next page.

The approach aims to explain the phenomenon of route
choice when there are alternatives. Any extension such as
having a third route would mean the development of an
entirely different and carefully designed rule base.

B. Decision Support in Route Selection

Advances in information technology allow the introduction
of real-time data exchange and real-time control as new
functions in road traffic. The information system must also
support the driver effectively in decisions (i.e., information in
the form of advice for proper action). The general information
should be screened for decision making while driving, so that
the system does not overload the driver with information.

In this paper, the focus will be on route selection, i.e.,
the capability to support the driver effectively in deciding on
an optimum route to his preference. Fig. 1 describes such a
navigation system. The core of such a system is an adaptive
route selection algorithm based on a hybrid fuzzy-neural (FN)
approach. Each feasible route has a set of attributes associated
with it. The attributes are correlated and the final decision
(choice) by the driver is perceived as a nonlinear function of
the attributes.

This work is different from [9] as many more road attributes
are treated in the route selection. Hence, route choice is not

IF the perceived travel time on route 1 IS medium AND
the perceived travel time on route 2 IS very high ,

THEN attractiveness of route 1 IS I will probably take route 1 AND
I will definitely not take route 2
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Fig. 1. A navigation system.

simply minimization of travel time. Also, this work does not
need to assume that the driver is familiar with the network,
streets and the traffic conditions. In addition, the approach can
handle more than two feasible routes. When comparing with
[10] and [11], the approach is more general and can apply to
any O/D pair with any number of feasible routes.

This paper is outlined as follows. Section II gives a descrip-
tion on how a route selection system is setup based on some
important attributes of a route. Section III presents a hybrid
FN approach and the basic ideas behind such an approach.
The details on the construction of an FN network is given in
Section IV. Section V describes a modeling of the driver’s
route selection behavior using fuzzy rules, which is then used
for determining the weights of the FN network. Section VI
gives the details on the training of the FN network. An adaptive
route selection algorithm is then given in Section VII, which
is followed by an example in Section VIII. The paper is
concluded in Section IX.

II. SYSTEM DESCRIPTION

A. System Setup

1) Route Characteristics:It is perceived that a driver may
select a route based on many different factors which include:

• travel distance;
• travel time;
• degree of congestion (number of cars on the road, queue

length);
• toll (of expressway or highway);
• degree of difficulty of travel (width of the road, number

of lanes, and number of pedestrians and bicycles on the
road, etc.);

• scenery (especially for long-distance trip).

2) Route Attributes:It is perceived that a feasible route has
many different attributes. These attributes coincide with the
factors which are used by the driver in route selection. Below
is a set of some of the most important attributes of a feasible
route. Note that each attribute has a range from zero (0) to
one (1).

• Travel Distance: denotes the route with theshortest
travel distance, relative to the set of feasible routes.
can be used to denote routes which arekm longer than
the shortest route, where is a system parameter. The
attribute value for other routes can be decided based on
a linear scale.

• Travel Time: denotesshortest travel time, relative to
the set of feasible routes. can be used to denote routes
which are minutes longer than the quickest route, where

is a system parameter. Again, the attribute value for
other routes can be decided based on a linear scale.

• Degree of Congestion: denotesno congestionat all.
denotes the worst situation.

• Toll (of Expressway or Highway): denotesno toll and
no highway at all. denotes the worst situation.

• Difficulty of Travel (Narrowness and Winding of the Road,
Number of Traffic Lights, Road Work, and Number of
Pedestrians and Bicycles on the Road, etc.): denotes
the ideal road situation, very easy to drive. denotes
the worst situation.

• Scenery (Especially on Long-Distance Trip): denotes the
best scenery. The higher, the better.

3) Types of Attribute:It can be noticed that for the at-
tributes travel distance, travel time and scenery, a driver would
like those attribute scores to be as close to one (i.e., as
large) as possible for an ideal route. These three attributes are
therefore called “positive attributes.” As for attribute scores
for congestion, toll and degree of difficulty, a driver would
prefer them to be as close to zero (i.e., as small) as possible
and they are called “negative attributes.”

It can also be perceived that some attributes of a feasible
route are dynamic while some can be considered as static. The
dynamic ones are travel time, degree of congestion and degree
of difficulty of travel. The static ones are travel distance, toll,
and scenery.

4) Driver’s Dynamic Settings:It is perceived that in some
situations, a driver may have a particular preference. This may
happen when planning for a special trip on a particular day.
The following panel can be used as an interface for the driver

IF there is a small negative difference in travel time AND
there is a bigger frequency than on the alternate route B

THEN there is a medium percentage of passengers using route A
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Fig. 2. Decision support to the driver.

to specify the relative importance of the route attributes given
at the bottom of the page.

The introduction of these panel weights gives a quick and
convenient means for a driver to specify his requirements to
the routing algorithm. Effectively, the value of each route
attribute is multiplied by its associated panel weight before
passing to the route selection algorithm. For example, if a
driver is very much concerned with avoiding congestion,
and has the usual concern of arriving the destination by a
quick route, the settings can be arranged as the panel shown
above. In this way, the road attributes “toll,” “difficulty of
travel,” and “scenery” will not be taken into consideration
by the routing algorithm. On the other hand, the “degree of
congestion” attribute should be given more weight than “travel
time” and “travel distance.” The suggested values forare as
follows.

“Don’t care” 0.0.
“Not important” 0.4.
“Normal” 0.7.
“Important” 1.0.

5) Decision Support (Fig. 2):It is perceived that at a par-
ticular instance of time, a number of different feasible routes
which have different set of attributes should be considered
by the driver. The driver has to make a decision based
on the relative importance of the different factors for route
selection. Each decision is based on a combination of different
factors. There could be some heuristics in route selection, but
some preferences could be difficult to express in words. The
objective here is to design anoptimum route search function

in an in-car navigation system so that it will have the following
characteristics.

• It is a decision-making assistant to the driver in route
selection. In other words, it embodies a route selection
algorithm.

• It can model the behavior of the driver by storing his
preference and previous decisions/choices.

• It can adapt and learn from the recent decisions of the
driver.

III. FUZZY-NEURAL APPROACH

A. Artificial Neural Net (ANN)

Neural networks [12] can be developed to model the driver
behavior. It is chosen for this study for their ability to
learn from examples, to generalize, to predict and to cope
with incomplete input data. A neural network is a parallel
distributed information processing system. It consists of a large
number of highly interconnected, but very simple processing
elements known as neurons. Each neuron has a number of
inputs and one output which branches out to inputs of other
neurons. The output of a neuron is a nonlinear function of
the sum of all inputs through the weighted links. Hence, the
knowledge of a network is distributed throughout the weighted
links.

For our application, the inputs will be the various attributes
of a route and the output will be an acceptance measure of
the route. The ANN can be trained off line. The real-time
execution of the ANN will be extremely fast. It also has the

Don’t care Not important Normal Important
I --------------------I --------------------------I -----X------I -------------------I min. travel distance
I --------------------I --------------------------I -----X------I -------------------I min. travel time
I --------------------I --------------------------I -------------I ---------X--------I avoid congestion
I ---------X---------I --------------------------I -------------I -------------------I avoid highway/toll
I ---------X---------I --------------------------I -------------I -------------------I avoid difficult road
I ---------X---------I --------------------------I -------------I -------------------I good scenery
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ability to adapt to different users of the car. Any new user can
train the network to learn his preference.

B. Fuzzy Systems

A driver’s choice of a route is normally based on a complex
evaluation process in which the attributes of all the feasible
routes are weighted subjectively. The utilities of individual
route attributes are also measured subjectively. For example,
despite the fact that estimated travel time is a measurable
parameter, when a driver makes the route choice, his notion
of travel time is often fuzzy. Also, he would tradeoff the
different route attributes involved and makes his judgement.
The modeling of such a decision-making process of a driver
is complex and it is believed that fuzzy logic and approximate
reasoning model can help to understand the process. The aim
of this paper is to develop a fuzzy expert system [13] which
can be used to rank the feasible routes. At the beginning of the
system, heuristic rules on how the driver evaluates the route
attributes can be specified.

C. Advantage of Fuzzy Systems

Rule-based fuzzy systems are based on fuzzy theory, with
expert knowledge represented explicitly using a set of fuzzy
if-then rules. They offer a high degree of transparency into
the system being modeled.

D. Advantage of Neural Systems

Neural networks have very strong learning capability. Given
some numerical data on how a system should behave, there are
many neural network algorithms which try to learn this system
behavior. Knowledge is stored implicitly in the weights of a
neural network. However, the neural network offers no insight
to internal dynamics and relationships.

E. A Hybrid Approach

A hybrid FN approach can combine the advantages of both
approaches. This will further enhance the intelligence of the
DRG system, especially in the modeling of the driver behavior.

The ideas are as follows.

1) A rule-based fuzzy system is developed which represents
a preliminary model of the driver.

2) The rule-based fuzzy system is then implemented using
a neural network. A method of constructing a neu-
ral network which is equivalent to the fuzzy system
is developed. It is constructed so that the procedures
and membership functions of the fuzzy system can be
retrieved from the implementation of the neural network.

3) A special learning algorithm is then used to learn and
adapt itself to the recent choices of the driver. The
weights of the network will be adjusted. The derivation
of the learning algorithm is based on a gradient descent
algorithm.

4) After the training procedure, the modified membership
functions of the fuzzy systems can be retrieved. This
fuzzy system with modified membership functions rep-
resent the latest model of the driver. The fuzzy system

has now been tailored to the particular driver. The model
of the driver can also be represented by a set of weights
of the equivalent neural network.

IV. CONSTRUCTION OFFN NETWORK

In this section, the architecture of a kind of FN network
is described. The network is essentially a parallel imple-
mentation of a fuzzy system using a particularly structured
neural network. The structure involves the construction of
a fuzzification subnetwork and a defuzzification subnetwork.
The two subnetworks will be integrated in such a way that the
structure and decision-making process of the original fuzzy
system can be fully retrieved from its network implementa-
tion. The corresponding neural network should have similar
performance as the original fuzzy system.

Fig. 3 shows the architecture of the entire FN network. Each
subnetwork performs a different function explained as follows.

• Fuzzification Subnetwork: To represent the membership
functions of the linguistic terms of the input attributes.

• Defuzzification Subnetwork: To generate a defuzzified
value which represents the acceptance level of a feasible
route.

Here, a summary of the notations used in the discussion is
given.

Inputs to the fuzzy system or the fuzzification subnet-
work, in the range [0, 1].
Outputs from the fuzzification subnetwork or inputs
to the defuzzification subnetwork.
Weights in the defuzzification subnetwork.
Defuzzified output from the fuzzy system or output
from the defuzzification subnetwork.
Weights in the second layer of the defuzzification
subnetwork.
Panel weights in the range [0, 1].
Intermediate quantity in the defuzzification subnet-
work.
Sum of all the .
Number of fuzzy rules.
Number of route attributes.
Number of discrete values in the output range.
Number of feasible routes when given an O/D pair.
Datum value used in the defuzzification procedure.

A. Fuzzification Subnetwork

The inputs of the system go to the first layer which is
consisted of a number of fuzzification subnetworks. The input

to each fuzzification subnetwork is the same as the input
to the fuzzy logic system. The outputs from the fuzzification
subnetwork correspond to the degree of membershipwhere

is the number of linguistic terms corresponding to the.
Fig. 3 shows some two-layer fuzzification subnetworks for
this purpose. It should be noted that the number of hidden
layers in a fuzzification subnetwork is not important as long
as it can represent the membership function of the linguistic
term of the input attribute. Initially, each subnetwork should
be trained with the specified membership functions of. If
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Fig. 3. Architecture of the FN network.

two inputs have the identical set of linguistic terms, then the
same fuzzification subnetwork can be used at the beginning.
During the subnetwork learning stage described later on, the
membership functions of the linguistic terms will be changed
subsequently using the training data.

B. Defuzzification Subnetwork

This is the most important stage in the construction of the
FN network. The aim is to compute the acceptance value
of a feasible route. The main issue concerns with ways to
represent membership functions of output linguistic terms us-
ing a network implementation and to perform defuzzification.
The defuzzification subnetwork consists of two layers. The
first layer is introduced to represent the membership functions
of output linguistic terms. The number of inputs to this
layer is the same as the number of fuzzy rules. Let
be the number of discrete values in the output range. Let

be a set of discrete output values. The
initial weights of this layer are calculated from membership
functions of the output as

(1)

where and . Note that is the
linguistic label of rule . Essentially, it means that the weight

equals the degree of membership of at .
The second layer in this subnetwork performs the task of
defuzzification. Here, a center-of-area method is used. In this
case, the weights of the second layer is given by

(2)

where

(3)

Fig. 4. The definition for the terms very, averagely, and slightly.

The defuzzified value is given by

(4)

whereas

(5)

Again, the initial weights in the first layer of the defuzzifica-
tion subnetwork can be changed later by the learning algorithm
and the training data. However, the learning process will only
change the membership functions of the output linguistic terms
in the first layer and not the defuzzification operations in the
second layer.

V. MODELING OF DRIVER BEHAVIOR

A. Fuzzy Ranking Rules

Each driver would have his own perspective of a desirable
route. The system is designed so that a driver can specify his
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Fig. 5. Definition for the membership functions: VBAD—very bad; BAD—bad; NG—not good; FAIR—fair; GOOD—good; and VG—very good.

Fig. 6. First fuzzy rule used for modeling of the driver’s route selection.

preference using fuzzy rules with some predefined linguistic
terms. Below is an example of a set of fuzzy rules that may
be used by a typical driver for route ranking.

1) If travel distance is averagely short, then route is
good .

2) If travel time is averagely short, then route isvery
good .

3) If congestionis averagely heavy, then route isvery
bad .

4) If toll is averagely high, then route isnot good .
5) If degree of difficulty is averagely high, then route

is bad .
6) If sceneryis averagely good, then route isfair .

The linguistic terms are in brackets. In the rule antecedent
part, the driver can choose from the term set (very, averagely,
and slightly). The definition for them can be seen in Fig. 4.
The definition of the membership function ofgood, very good,
very bad, not good, bad, andfair is shown in Fig. 5. The first
fuzzy rule defined above is represented as in Fig. 6.

B. Linguistic Terms and Rule Firing

An example of definition of the membership function for the
output linguistic terms is shown in Fig. 5. The numeric value
of a route attribute is the crisp input to the associated fuzzy
rule. The fuzzification subnetwork will compute the degree of
match between the crisp input and the fuzzy set describing the
meaning of the rule antecedent. The fuzzy set describing the
meaning of the rule antecedent is scaled to the same degree to
which the rule antecedent has been matched by the crisp input.

Finally, the scaled fuzzy sets of each rule are aggregated to
obtain the defuzzified value, which is a performance measure
of the feasible route.

In graphical representation, the firing of each fuzzy rule
will contribute an area to the defuzzification procedure. The
algorithm adopted in this paper is the center-of-area (COA)
method, which is the best well-known defuzzification method.

A datum value is introduced in the defuzzification pro-
cedure and the effect is analogous to having a uniform
rectangular area over the output range. This is an area of fixed
size and it is always taken into account in the defuzzification
procedure. This area is important because if the driver is
interested in ranking routes based on just a single road
attribute, the defuzzified value from the route algorithm will
give the desired ranking.

An example is given below. Suppose the driver would
like to rank the routes based only on the road attribute
“travel distance.” Therefore, the panel settings of all the other
attributes should be placed to the far left-hand side (i.e., Don’t
Care). Suppose the “travel distance” attribute values of the two
feasible routes are 0.3 and 0.7. Also, let the datum value be
0.1. The graphical representation of the defuzzification method
in these two cases are given by the two figures in Fig. 7. In
each case, the defuzzification procedure has to handle two
areas and the defuzzified value gives the correct ranking. If
the datum value is not used, the defuzzified value would be
the same as the defuzzification procedure would not be able
to distinguish the two cases as the center-of-area would be the
same. This datum value in the defuzzification algorithm can
also be viewed as a scaling factor.



PANG et al.: ADAPTIVE ROUTE SELECTION FOR DYNAMIC ROUTE GUIDANCE SYSTEM 2035

Fig. 7. Defuzzification with the datum (area) would give the correct ranking.

VI. TRAINING OF THE FN NETWORK

In this section, an algorithm to train the FN network is
described. The architecture of the FN network for adaptive
route selection is shown in Fig. 3. The derivation of the
equations is in the Appendix. The objective is to train the
neural network so that it will refine the membership functions
of the fuzzy systems. A set of learning rules similar to the
backpropagation learning algorithm can be derived from the
gradient descent method.

The back-propagation learning algorithm developed for
standard multilayer feedforward neural networks can be
extended for the training of the FN network. Here, we assume
that a set of desired or optimal input/output pairs is available.
Let be the output of the network and be the desired
value. The error function is defined as

(6)

During the training process, the defuzzification algorithm
needs to be maintained, and, hence, theare calculated from
(2) using . The rule for updating in the first layer of the
defuzzification subnetwork can be shown as

(7)

where is a learning rate between and . and are
defined as in (2) and (3) respectively. represents the degree
of firing of fuzzy rule in the fuzzification subnetwork. Note
that is updated only if is within the range [0,
1]. The error term that is back-propagated to the output of

the fuzzification subnetwork is

(8)

This error term is used to adjust the weights of the fuzzifi-
cation subnetwork using the back-propagation algorithm.

When the training process has been completed, the new
membership functions can be recovered from individual sub-
network. From the fuzzification subnetwork, we can obtain
the modified membership functions for each linguistic label
of input . To obtain the modified membership functions
for the output linguistic labels, we have to set to one
(where ), all others to zero and obtain (where

).

VII. A DAPTIVE ROUTE SELECTION

ALGORITHM OF THE DRG SYSTEM

In this section, a route ranking/selection algorithm is pre-
sented. An important feature of this algorithm is on the training
of the FN network. With this, the system is made adaptive to
the preference of the driver. This preference is assumed to be
contained in the recent selection cases made by the driver.

The ARS algorithm is given as follows.

1) Route Attribute: Let be a set of attributes of
a route Also, let be the number of route attributes.
Note that each attribite is normalized to between 0 and
1. For example

travel distance (positive attribute; the higher, the
better);
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travel time (positive attribute; the higher, the
better);
congestion (negative attribute; the smaller, the
better);
toll charge (negative attribute; the smaller, the
better);
difficulty of travel (negative attribute; the smaller,
the better);
scenery (positive attribute; the higher, the better).

It should be noted that the values of this set of attribute
have already been modified by the panel settings spec-
ified by the driver. If the original values of the route
attributes are and the panel weights are , then

2) Fuzzy Rules: For each of the relevant route attributes
, determine the associated fuzzy rule using the given

set of linguistic terms. Let be this set of fuzzy rules.
3) Fuzzy-Neural Network: Construct an FN network based

on . Note that all weights in the FN network are
determined by the linguistic terms of the fuzzy rules.
Let be the set of weights in the network. Set the
learning rates of the FN network. A heuristic value to
use is 0.6 for the defuzzification subnetwork and 0.1
for the fuzzification subnetwork.

4) Datum: Set the datum of the FN network. This value
should be fixed for the rest of the system operation. A
heuristic value to use is 0.1.

5) Feasible Routes: For any given O/D pair specified by
the driver, let be the set of feasible routes. Letbe the
number of feasible routes. Hence, .

6) Route Score: For each feasible route, let be the inputs
to the FN network and be the output of the network,
which is a score of the feasible route. The FN network
can be viewed as a nonlinear mappingfrom to .
That is

where .
7) Route Ranking: Given , we obtain

. A feasible route in can be ranked according
to its score. This route ranking function is an important
decision-support assistant for the driver. The ranking
is carried out in accordance with the preference of the
driver specified by .

8) Adaptive Route Selection: Let be the chosen route
by the driver (i.e., theth route is selected). Also, let
be the score of the chosen route, andbe the highest
score among . That is

Let be the route with the highest score. Hence

If , the driver has accepted the recommendation
from the route selection function. The procedure can
be repeated with another O/D pair by going back to
step 5). If , the selection of the driver is different
from the recommendation and the driver has selected
a different route for travel. In this case, two training
pairs are formed

The reasoning is as follows. The route that is recom-
mended by the system is the one which has the highest
score among all the feasible routes. If this route is not
accepted by the driver, the score of this route should
have been lowered. On the other hand, the score of
the chosen route should have been higher to reflect the
preference of the driver. Of course, it is not clear how
much the scores should have been changed. Thus one
can argue that the chosen route should have been given
the highest score, whereas the declined route can be
given a score equal to, which is lowered than before.
This is reasonable as the interchange will also keep the
numeric values of the FN network to scale.

9) Training the FN Network: The two training pairs that
are formed are used as input–output training pairs of
the FN network. Note that each case of deviation from
the recommendation will form two training pairs. On
the frequency of training the FN network, it can be
carried out after every case(s), where can be set at
the beginning of the system operation.

10) New Weights: Store in a data file associated with the
driver. Go back to step 5).

To summarize, the route selection procedures are as follows.

1) The system is setup by a driver inputing his fuzzy rules
on route selection using a set of predefined linguistic
terms. This is the initial setup of the system and an
FN network is formed. The weights of the FN net-
work are determined from the shape of the linguistic
terms.

2) When planning a trip or during a trip, the driver can
modify the relative importance of the various route
attributes using some settings on a panel. This is a
convenient way for specifying driver’s preference, which
could be useful for planning a special-purpose trip.

3) The driver inputs his origin and destination to the
system, and a set of feasible routes is obtained.

4) For each feasible route, the attribute scores are inputs
to the FN network, and the output is an overall score
of that feasible route. With the computation of this
overall score, a ranking of the set of feasible routes is
performed.

5) The driver can accept the recommendation from the
system. Alternatively, he can choose an alternate route.
Any derivation from the recommendation will be stored,
and this information is used for forming the training
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pairs of the FN network. Hence, the system can be made
adaptive to the decision-making of the driver.

VIII. A PPLICATION EXAMPLE OF THE FN NETWORK

A. Example on the Adaptive Feature of the FN Network

An example on the use of the FN network is given in this
section. Suppose the number of feasible routes is five. The
FN network would give a score to each feasible route, and
a ranking is resulted. In order to show the adaptive ability of
the network, suppose we have four cases of deviation from the
recommendation of the FN network. In each case, the routes
are ranked according to the fuzzy rules previously setup by the
driver. However, in this example, the driver has deliberately
changed his route choice and selected the route with the best
scenery in all the four cases.

For example, in the first case, five feasible routes are
presented to the driver. The route attributes are given at the
bottom of the page.

Using the same notation as in the ARS algorithm

(i.e., the number of road attributes)

(i.e., the datum of the FN network)

(i.e., the number of feasible routes)

Note that Route 1 is the route with the shortest travel time.
Route 2 is the route with the shortest travel distance. Route 4
is the route with the best scenery. Route 5 is the route with
the second best scenery. From the set of fuzzy rules specified
before, the score for each feasible route is obtained from the
FN network. The scores are as follows:

Note that Route 3 has the highest score. Here, suppose the
driver would like the route with the best scenery, i.e., Route 4.

Hence

(i.e., route has the highest score from the FN network)

(i.e., route is selected by the driver)

Two training pairs are formed

which are

or

B. Training of the FN Network

The following input–output pairs are used for training the
FN Network. They are collected from the four deviation cases
made by the driver

([0.45 0.3 0.4 0.3 0.1 0.9], 0.215 649)
([0.85 0.5 0.2 0.2 0.3 0.5], 0.115 851)
([0.5 0.8 0.6 0.2 0.3 0.7], 0.214 050)
([0.7 1.0 0.2 0.4 0.7 0.3], 0.163 516)
([0.7 0.8 0.5 0.2 0.3 0.8], 0.258 547)
([1.0 0.8 0.3 0.3 0.2 0.6], 0.201 303)
([0.7 1.0 0.4 0.7 0.7 0.7], 0.213 644)
([1.0 0.85 0.2 0.6 0.5 0.4], 0.157 301).

C. Testing of the FN Network

For the case 1 example described in Section VIII-A1, the
attributes of the five feasible routes are provided for the newly
adapted FN network. New scores are obtained and given at
the bottom of the next page.

It is noticed that the route with the best scenery is now
given the highest score, followed by the route with the second
best scenery. This is what would be expected from an adapted
system. That is, if the same route choice situation arises in
the future, the route selection function would offer the desired
ranking of the feasible routes.

distance time congestion toll difficulty scenery
Route 1: 0.6 1.0 0.3 0.6 0.3 0.3
Route 2: 1.0 0.8 0.5 0.4 0.2 0.5
Route 3: 0.85 0.5 0.2 0.2 0.3 0.5
Route 4: 0.45 0.3 0.4 0.3 0.1 0.9
Route 5: 0.4 0.25 0.45 0.35 0.15 0.85
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(a) (b)

(c)

Fig. 8. Modified membership function of the route attributes.

D. Modified Membership Function

The modified membership function of the route attributes
is shown in Fig. 8. It can be noticed that the peaks of
the membership functions such as distance, congestion, time,
difficulty and toll have all been lowered. In addition, some
“counterweights” on those membership functions can be ob-
served. Those two observations suggest that the FN network

is trying to reduce the importance of those five route at-
tributes.

On the other hand, the membership function of the “scenery”
attribute has been strengthened as we can observe additional
weights being added on the positive scale.

From the modification to the membership functions of the
FN network, we can observe that the route selection system

new score
Route 1: old score = 0.207 638 --- 0.187 520
Route 2: old score = 0.201 110 --- 0.169 031
Route 3: old score = 0.215 649 (best score) --- 0.127 172
Route 4: old score = 0.115 851 (best scenery) —0.206 356
Route 5: old score = 0.072 935 (second best scenery) --- 0.197 862
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is trying to be adaptive to the recent changes in the driver’s
selection of routes. It has correctly identified that the driver is
giving more preference to routes with the best scenery. After
the training of FN network with the data from four cases of
those choices, the FN network has adapted itself and is giving
more preference to routes with good scenery.

E. Implementation

The FN network described above and the adaptive route se-
lection algorithm has been implemented using the C program-
ming language. This work will form an important component
of an intelligent route navigation system.

IX. CONCLUSION

A useful routing system should have the capability to
support the driver effectively in deciding on an optimum route
to his preference. In this paper, anoptimum route search
function in a typical in-car navigation system is developed.
The main contributions of this paper are as follows.

• A FN approach is used for the modeling of the decision-
making process in route choice of a driver.

• The approach is general in the sense that the fuzzy rules
can handle any number of feasible routes when given an
O/D pair.

• The approach can also handle multiple route selection
criteria (travel time, travel distance, congestion, scenery,
etc.).

• Six primary criteria for route selection are defined in this
paper. They serve as the fundamental factors in an ARS
algorithm.

• The most important feature of the ARS algorithm is its
adaptive nature. The developed FN network can be trained
(made adaptive) with the information on the driver’s
deviation from some previous recommendations of the
FN network. An example is included in this paper to
show this feature.

To summarize, the route selection algorithm is orientated
on the driver’s preference. AnFN approach is used to
represent the correlation of the attributes with the driver’s route
selection. A recommendation or route ranking can be provided
to the driver. Based on a training of the FN net on the driver’s
choice, the route selection function can be made adaptive to
the decision-making of the driver. This methodology paves the
way for more intelligent navigation systems.

APPENDIX I
DEFUZZIFICATION ALGORITHM

In this section, the equation of the defuzzification algorithm
is derived.

Let be a set of discrete values
within the range of output in a fuzzy system. Also, let
be the membership function of the output linguistic term
defined for rule . Now, suppose the degree of firing rule

be .
With the notation defined above, is the degree

of membership of at . In the defuzzification

subnetwork, this is denoted by which are the initial weights
when implementing the network. If the degree of firing rule
is , we denote the degree of membership by where

At output , let us define

(9)

where is the number of rules.
The equation for output defuzzification using the center-of-

area (COA) method is given by

(10)

(11)

(12)

where

(13)

and

(14)

APPENDIX II
DERIVATION OF THE LEARNING ALGORITHM

With reference to (1)–(6) in the paper, first we differentiate
w.r.t. in (2)

(15)

From (3), differentiate w.r.t. where

(16)

From (15) and (16)

(17)

From (4)

(18)

(19)

From (5)

(20)

Now
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Therefore

However

for . This means that is connected only to weights
only.

Therefore

Hence

(21)

from (17), (4), (18), and (19)

(22)

Hence, from (6) and (20)

(23)

e.g.,

APPENDIX III
DERIVATION OF THE ERROR TERM

(24)

Then

(25)

That is,

But

where .
Therefore

(26)
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