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Adaptive Route Selection for Dynamic
Route Guidance System Based on
Fuzzy-Neural Approaches

Grantham K. H. Pangylember, IEEE Kazunori Takahashi, Takayoshi Yokotdember, IEEEand Hiroshi Takenaga

Abstract—One functionality of an in-vehicle navigation system
is route planning. Given a set of origin—destination (O/D) pairs,
there could be many possible routes for a driver. A useful routing
system should have the capability to support the driver effectively
in deciding on an optimum route to his preference. The objective
of this work is to model the driver behavior in the area of route
selection. In particular, the research focuses on an optimum route
search function in a typical in-car navigation system or dynamic
route guidance (DRG) system. In this work, we want to emphasize
the need to orientate the route selection method on the driver’s
preference. Each feasible route has a set of attributes. A fuzzy-
neural (FN) approach is used to represent the correlation of the
attributes with the driver’s route selection. A recommendation or

roads). Given an origin—destination (O/D) pair, there could be
many possible routes through the network. Generally, the cost
functions are related to the links, which could be reflected by
the travel time, distance, cost of travel, etc. The problem is
understanding the complex evaluation process involved in the
route choice and implementing a route selection function for
the in-vehicle guidance system.

A route guidance system is a routing system that provides
instructions to drivers based upon “optimum” route solutions.
A driver can make the destination known to the system. The
origin can be input or obtained directly from the use of a

route ranking can be provided to the driver. Based on a training
of the FN net on the driver’s choice, the route selection function

can be made adaptive to the decision making of the driver.
ITH THE recent developments of advanced technoldhe traffic network.

nges, which includes communications, microelectron- One objective of such a dynamic route guidance system
ics, sensors, and information technology, the provision &f to balance the level of service on all major network links
real-time information on traffic conditions to drivers has$o as to increase the efficiency, speed, safety and quality of
become technically possible. For example, measurementtigivel (e.g., to minimize travel time). Such a system would
queue length and traffic flow in a traffic network can b&e particularly useful when accidents or roadworks occurred
obtained from inductive loop detectors or TV camera fdn the traffic network. Also, the system is highly beneficial to
surveillance. Information on the degree of congestion atide motorist when driving in unfamiliar areas. A DRG system
estimated travel time can be collected by a traffic contr@tould act as the driver’s assistant and try to reduce his tension.
center like Vehicle Information and Communication System The issue of driver behavior in terms of route choice and
Center (VICS), which started operation in Japan in 1998sponse to guidance is complex. One focus in this paper is on
VICS is an advanced information system designed to sefit¢ modeling of driver behavior in route choice on the DRG
real-time data on traffic jams, travel time, accidents, and roggstem. Here, we assume that the DRG system has a voluntary
restrictions to in-vehicle units. The real-time road traffic datghoice scheme and the driver has the option of not following
and information are gathered by the VICS Center and th#e advice from the DRG system. The driver's preference is
distributed by radio wave and infrared beacons installed @odeled as a fuzzy expert system, and his reaction to the
every major road junction in the Tokyo and Osaka areas. TR@vice and information provided by a DRG system is stored.
service area will gradually extend to the highways and oth&he previous choices of the driver, in particular the deviation
areas. Thus, the new navigation systems will be able to utiliff@m the recommendation of the system, are then used for
the real-time traffic information by simply adding a receivertraining so that the route selection function is made adaptive

One functionality of an in-vehicle navigation system is routt® the driver's preference.

planning. Here, we represent a road network in the form of

nodes (representing junctions) and a set of links (representing . . .
(rep gl ) (rep A.ngterature Review
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his personal travel cost. They have also assumed that timéhe use of fuzzy logic methodology in route selection was
minimization is the only criterion for the driver’s route choicefirst proposed by Teodorovic and Kikuchi [9]. They have
A more comprehensive study on this topic is by Bovy anidoked at the problem of route choice between two alternate
Stern [2]. They have identified a number of factors relatedutes. The driver's perceived travel time on each route is
to route selection and they fall into four categories: thieated as a fuzzy number, and his choice of route is based
characteristics/attributes of the feasible routes, the charaateran approximate reasoning model and fuzzy inference. The
of the traveler, the nature of that particular trip (e.g., purposaodel consists of rules which indicate the degree of preference
budget), and other circumstances (e.g., weather, day/niglfy. each route given the approximate travel time of the two
One study of route choice factors among truck drivers ogeutes. The approach considers only the travel time criterion
motorways in Austria has come up with the following ordeand cannot be easily generalized to multiple routes.
of importance: travel time, width of the road, travel distance, Lotan and Koutsopoulos [10] have also proposed a modeling
route angularity, probability of delays, dangerous segment&gmework for route choice based on fuzzy set theory and
slope of the road, multilanes, road safety, expected weathapproximate reasoning. The approach is based on the driver’s
and traffic density on the road. perception of attributes of the network, attractiveness of alter-
As mentioned in [2], studies have revealed that peoplenéte routes as well as models for reaction to information. An
preferences for various route characteristics do vary, aggample of a fuzzy rule is given at the bottom of the page.
variables can be related to the characteristics of the travelersSuch an approach works for a particular O/D set and does
their trips, and the routes to which they have been expos®@! seem general enough for different O/D pairs. Also, for an
The difference seemed to be related to the great importar@@ pair, the inclusion of an additional feasible route means
of direct/quick access to the destination in work trips, an@h entirely new set of fuzzy rules.
importance of amenities (comfort/pleasant scenery) in leisurelyTeodorovic and Kalic [11] have considered route choice
trips. For example, scenery was found the most importapfoblem in air transportation using fuzzy logic. Other than
noneconomic factor in shopping trips. travel time, the approach can handle additional route selection
So far, the idea of dptimum” has been taken in a very criteria such as travel costs, flight frequency, and the number
limited sense. Most route guidance systems nowadays comRftestopovers. However, the method works well when there
the “best” route for the driver based on either the shortedfe two possible routes (A and B) from the origin to the
time [3], [4] or the shortest distance [5]. Some systengastination.An example of a fuzzy rule is given at the bottom
would provide information on congestion of the road as weff the next page. .
[6]. Hence, the route selection function makes use of the The approach aims to explain the phenomenon of route
distance data (static) and information on average travel sp&dpice when there are alternatives. Any extension such as
(dynamic). In the VICS project announced by the Nation&aving a third route would mean the development of an
Police Agency in 1991optimum route selectionwas a focus, €ntirely different and carefully designed rule base.
but the focus was based only on travel distance and travel
time reduction based on empirical and real-time informatioB: Decision Support in Route Selection
Also, it was not clear how the two criteria can be resolved Advances in information technology allow the introduction
or compromised to give the optimum route. For example, #f real-time data exchange and real-time control as new
the driver's route selection logic in [7], it is not clear howfunctions in road traffic. The information system must also
to tradeoff the relative importance of minimum distance routsupport the driver effectively in decisions (i.e., information in
and minimum time route. the form of advice for proper action). The general information
From a survey carried out in 1989 [8], respondents weghould be screened for decision making while driving, so that
asked to choose between guidance systems that chose rowiessystem does not overload the driver with information.
on the basis of shortest time, shortest distance or somen this paper, the focus will be on route selection, i.e.,
combination of the two. In London, 42% of the respondentie capability to support the driver effectively in deciding on
would prefer a system that can perform a tradeoff betwean optimum route to his preference. Fig. 1 describes such a
travel time and travel distance. 56% said they would choosavigation system. The core of such a system is an adaptive
route based on the shortest travel time. A similar result isute selection algorithm based on a hybrid fuzzy-neural (FN)
obtained in Paris. In Munich, 71% would prefer a tradeo#ipproach. Each feasible route has a set of attributes associated
between travel time and travel distance, and only 27% woukldth it. The attributes are correlated and the final decision
choose route based just on the shortest travel time. Thereforécitoice) by the driver is perceived as a nonlinear function of
can be observed that a routing algorithm that can accommodsite attributes.
the various route selection criteria and their tradeoff would be This work is different from [9] as many more road attributes

highly desirable. are treated in the route selection. Hence, route choice is not
IF the perceived travel time on route 1 IS medium AND
the perceived travel time on route 2 IS very high ,
THEN attractiveness of route 1 IS | will probably take route 1 AND

I will definitely not take route 2
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Fig. 1. A navigation system.

simply minimization of travel time. Also, this work does not ¢ Travel Distance 1 denotes the route with thehortest
need to assume that the driver is familiar with the network, travel distance relative to the set of feasible route®.
streets and the traffic conditions. In addition, the approach can can be used to denote routes which ardem longer than
handle more than two feasible routes. When comparing with the shortest route, where is a system parameter. The
[10] and [11], the approach is more general and can apply to attribute value for other routes can be decided based on
any O/D pair with any number of feasible routes. a linear scale.

This paper is outlined as follows. Section Il gives a descrip- « Travel Time 1 denotesshortest travel time, relative to
tion on how a route selection system is setup based on some the set of feasible route$. can be used to denote routes
important attributes of a route. Section Ill presents a hybrid \which arey minutes longer than the quickest route, where

FN approach and the basic ideas behind such an approach. , js a system parameter. Again, the attribute value for
The details on the ConStI‘UCtion Of an FN netWOfk iS given in Other routes can be decided based on a |inear Sca|e_

route selection behavior using fuzzy rules, which is then used yenotes the worst situation.

for determining the weights of the FN network. Section VI , g (of Expressway or Highway) denotesno toll and
gives the details on the training of the FN network. An adaptive |, highway at all. 1 denotes the worst situation.

route selection algorithm is then given in Section VII, which

Difficulty of Travel (Narrowness and Winding of the Road,

is followed by an example in Section VIIl. The paper is Number of Traffic Lights, Road Work, and Number of

concluded in Section IX.

Pedestrians and Bicycles on the Road, et6.)denotes

the ideal road situation, very easy to drivel denotes
Il. SYSTEM DESCRIPTION the worst situation.

« Scenery (Especially on Long-Distance Trip)Jdenotes the

A. System Setup best scenery The higher, the better.

1) Route Characteristicsit is perceived that a driver may 3) Types of Attribute:lt can be noticed that for the at-
select a route based on many different factors which includeibutes travel distance, travel time and scenery, a driver would

L]

travel distance; like those attribute scores to be as close to one (i.e., as
travel time; large) as possible for an ideal route. These three attributes are
degree of congestion (number of cars on the road, quetlierefore called “positive attributes.” As for attribute scores
length); for congestion, toll and degree of difficulty, a driver would
toll (of expressway or highway); prefer them to be as close to zero (i.e., as small) as possible

degree of difficulty of travel (width of the road, number&and they are called “negative attributes.”

of lanes, and number of pedestrians and bicycles on thdt can also be perceived that some attributes of a feasible

road, etc.); route are dynamic while some can be considered as static. The
scenery (especially for long-distance trip). dynamic ones are travel time, degree of congestion and degree

2) Route Attributes:It is perceived that a feasible route ha®f difficulty of travel. The static ones are travel distance, toll,
many different attributes. These attributes coincide with tr@nd scenery.
factors which are used by the driver in route selection. Below4) Driver’s Dynamic Settingsit is perceived that in some
is a set of some of the most important attributes of a feasild#uations, a driver may have a particular preference. This may
route. Note that each attribute has a range from zero (0) tappen when planning for a special trip on a particular day.
one (1). The following panel can be used as an interface for the driver

IF there is a small negative difference in travel time AND
there is a bigger frequency than on the alternate route B
THEN there is a medium percentage of passengers using route A
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Fig. 2. Decision support to the driver.

to specify the relative importance of the route attributes giveén an in-car navigation system so that it will have the following
at the bottom of the page. characteristics.

The introduction of these panel weights gives a quick and. |t js a decision-making assistant to the driver in route
convenient means for a driver to specify his requirements to selection. In other words, it embodies a route selection
the routing algorithm. Effectively, the value of each route  algorithm.
attribute is multiplied by its associated panel weight before « |t can model the behavior of the driver by storing his
passing to the route selection algorithm. For example, if a preference and previous decisions/choices.
driver is very much concerned with avoiding congestion, « It can adapt and learn from the recent decisions of the
and has the usual concern of arriving the destination by a driver.
quick route, the settings can be arranged as the panel shown
above. In this way, the road attributes “toll,” “difficulty of IIl. Euzzy-NEURAL APPROACH
travel,” and “scenery” will not be taken into consideration
by the routing algorithm. On the other hand, the “degree @f Artificial Neural Net (ANN)
congestion” attribute should be given more weight than “travel

time” and “travel distance.” The suggested valuesgoare as Neural networks [12] can be developed to model the driver

behavior. It is chosen for this study for their ability to

follows. ) ,
— ., learn from examples, to generalize, to predict and to cope
“Don.t care , 0.0. with incomplete input data. A neural network is a parallel
“mm |m5:'),ortant 8;‘ distributed information processing system. It consists of a large
orma 7.

number of highly interconnected, but very simple processing
“Important” 1.0. elements known as neurons. Each neuron has a number of
5) Decision Support (Fig. 2)lt is perceived that at a par-inputs and one output which branches out to inputs of other
ticular instance of time, a number of different feasible routeseurons. The output of a neuron is a nonlinear function of
which have different set of attributes should be considergite sum of all inputs through the weighted links. Hence, the
by the driver. The driver has to make a decision bas&#owledge of a network is distributed throughout the weighted
on the relative importance of the different factors for routénks.
selection. Each decision is based on a combination of differentFor our application, the inputs will be the various attributes
factors. There could be some heuristics in route selection, lafita route and the output will be an acceptance measure of
some preferences could be difficult to express in words. Thee route. The ANN can be trained off line. The real-time
objective here is to design aptimum route search function execution of the ANN will be extremely fast. It also has the

Don't care Not important Normal Important
[ ----- X I min. travel distance
min. travel time
avoid congestion
avoid highway/toll
avoid difficult road

good scenery

X X X
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ability to adapt to different users of the car. Any new user can  has now been tailored to the particular driver. The model
train the network to learn his preference. of the driver can also be represented by a set of weights
of the equivalent neural network.

B. Fuzzy Systems

A driver’s choice of a route is normally based on a complex IV. CONSTRUCTION OFFN NETWORK
evaluation process in which the attributes of all the feasible . . . .
routes are weighted subjectively. The utilities of individual In this section, the architecture of a kind of FN network

route attributes are also measured subjectively. For examp')?e described. The network is essentially a parallel imple-

despite the fact that estimated travel time is a measura Iééntatlon of a fuzzy system using a particularly structured

. . . neural network. The structure involves the construction of
parameter, when a driver makes the route choice, his not|0r} e e
a fuzzification subnetwork and a defuzzification subnetwork.

of travel time is often fuzzy. Also, he would tradeoff th . . !
different route attributes involved and makes his judgemeenThe two subnetworks will be integrated in such a way that the

The modeling of such a decision-making process of a driV%'ructure and decision-making process of the original fuzzy

is complex and it is believed that fuzzy logic and approxima é’Stem can be fully retrieved from its network implementa-

reasoning model can help to understand the process. The an: The corresponding neural network should have similar

X . . performance as the original fuzzy system.
of this paper is to develop a fuzzy expert system [13] which Fig. 3 shows the architecture of the entire FN network. Each

can be used to rank the feasible routes. At the beginning of thL'JE‘bnetwork erforms a different function explained as follows
system, heuristic rules on how the driver evaluates the roqte P P '

attributes can be specified. . Fuzz!fication Supnetv_vo;rkTo represent .the mem_bership
functions of the linguistic terms of the input attributes.

» Defuzzification Subnetwarklo generate a defuzzified
value which represents the acceptance level of a feasible
Rule-based fuzzy systems are based on fuzzy theory, with gute.

expert knowledge represented explicitly using a set of fuzzy o 4 summary of the notations used in the discussion is

if-then rules. They offer a high degree of transparency inHﬂven

the system being modeled. '

C. Advantage of Fuzzy Systems

x;  Inputs to the fuzzy system or the fuzzification subnet-
work, in the range [0, 1].
«;  Outputs from the fuzzification subnetwork or inputs
Neural networks have very strong learning capability. Given to the defuzzification subnetwork.
some numerical data on how a system should behave, there are;; Weights in the defuzzification subnetwork.
many neural network algorithms which try to learn this system % Defuzzified output from the fuzzy system or output

D. Advantage of Neural Systems

behavior. Knowledge is stored implicitly in the weights of a from the defuzzification subnetwork.
neural network. However, the neural network offers no insight 3,  Weights in the second layer of the defuzzification
to internal dynamics and relationships. subnetwork.
p;  Panel weights in the range [0, 1].
E. A Hybrid Approach w;  Intermediate quantity in the defuzzification subnet-
work.

A hybrid FN approach can combine the advantages of both Sum of all thew
approaches. This will further enhance the intelligence of the” u Hi-

DRG system, especially in the modeling of the driver behavior.” ~ Number of fuzzy rules.
The ideas are as follows. Number of route attributes.

. ) Number of discrete values in the output range
1) A ruIe.-br?lsed fuzzy systemis d.eveloped which representsq Number of feasible routes when given an O/D pair.
a preliminary model of the driver. , Datum value used in the defuzzification procedure.
2) The rule-based fuzzy system is then implemented using
a neural network. A method of constructing a neu- o
ral network which is equivalent to the fuzzy systerd™ Fuzzification Subnetwork
is developed. It is constructed so that the proceduresThe inputs of the system go to the first layer which is
and membership functions of the fuzzy system can lensisted of a number of fuzzification subnetworks. The input
retrieved from the implementation of the neural network:; to each fuzzification subnetwork is the same as the input
3) A special learning algorithm is then used to learn and the fuzzy logic system. The outputs from the fuzzification
adapt itself to the recent choices of the driver. Theubnetwork correspond to the degree of memberghipvhere
weights of the network will be adjusted. The derivatiort: is the number of linguistic terms corresponding to the
of the learning algorithm is based on a gradient descdfig. 3 shows some two-layer fuzzification subnetworks for
algorithm. this purpose. It should be noted that the number of hidden
4) After the training procedure, the modified membershipyers in a fuzzification subnetwork is not important as long
functions of the fuzzy systems can be retrieved. Thas it can represent the membership function of the linguistic
fuzzy system with modified membership functions regerm of the input attribute. Initially, each subnetwork should
resent the latest model of the driver. The fuzzy systebe trained with the specified membership functionscof If

s 3
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Fig. 3. Architecture of the FN network.

two inputs have the identical set of linguistic terms, then the  gegree of firing
same fuzzification subnetwork can be used at the beginning. A
During the subnetwork learning stage described later on, the 1 [ s
membership functions of the linguistic terms will be changed
subsequently using the training data.

B. Defuzzification Subnetwork

This is the most important stage in the construction of the
FN network. The aim is to compute the acceptance value
of a feasible route. The main issue concerns with ways to ; >
represent membership functions of output linguistic terms us- 1 attribute
ing a network implementation and to perform defuzzification. score
The defuzzification subnetwork consists of two layers. The o ,
first layer is introduced to represent the membership functiofi§ 4 The definition for the terms very, averagely, and slightly.
of output linguistic terms. The number of inputg to this
layer is the same as the number of fuzzy rutesLet n The defuzzified value: is given by
be the number of discrete values in the output rangéet

slightly:

U = {u1,us,--,u,} be a set of discrete output values. The w=">Bipi (4)
initial weights of this layer are calculated from membership i=1
functions of the output as whereas
Wiy = He; (U”) (1) i = Zw“ S+ d. (5)
j=1

wherei = 1,--.,n andj = 1,--.,7. Note thatC; is the

linguistic label of rulej. Essentially, it means that the weight Again, the initial weights in the first layer of the defuzzifica-

w;; equals the degree of membership Gf at v = ;. tionsubnetwork can be changed later by the learning algorithm

The second layer in this subnetwork performs the task afd the training data. However, the learning process will only

defuzzification. Here, a center-of-area method is used. In tiglkange the membership functions of the output linguistic terms

case, the weights of the second layer is given by in the first layer and not the defuzzification operations in the
second layer.

Uy
Bi=— (2)
i V. MODELING OF DRIVER BEHAVIOR
where
" A. Fuzzy Ranking Rules
Y= Zm 3 Each driver would have his own perspective of a desirable

i=1 route. The system is designed so that a driver can specify his
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~—datum = 0.1
-1 -0.8 -0.7 -0.5-0.4 0 0.1 0.50.6 0.8 1.0

Fig. 5. Definition for the membership functions: VBAD—very bad; BAD—bad; NG—not good; FAIR—fair; GOOD—good; and VG—very good.

Rule 1 : If <travel distance> is <averagely> short,
then <route> is <good>.

GOOD
N T A
SR AN I\ I
A N A I
N W —
0

P—
distance

Fig. 6. First fuzzy rule used for modeling of the driver's route selection.

preference using fuzzy rules with some predefined linguistiinally, the scaled fuzzy sets of each rule are aggregated to
terms. Below is an example of a set of fuzzy rules that maptain the defuzzified value, which is a performance measure

be used by a typical driver for route ranking. of the feasible route.

1) If travel distance is (averagely short, then route is In graphical representation, the firing of each fuzzy rule
{(good). will contribute an area to the defuzzification procedure. The

2) If travel time is (averagely) short, then route igvery algorithm adopted in this paper is the center-of-area (COA)
good). method, which is the best well-known defuzzification method.

3) If congestionis (averagely) heavy, then route igvery A datum valued is introduced in the defuzzification pro-
bad). cedure and the effect is analogous to having a uniform

4) If toll is {averagely high, then route ignot good. rectangular area over the output range. This is an area of fixed

5) If degree of difficulty is (averagely) high, then route size and it is always taken into account in the defuzzification
is (bad). procedure. This area is important because if the driver is

6) If sceneryis (averagely) good, then route igfair ). interested in ranking routes based on just a single road

The linguistic terms are in brackets. In the rule anteceded{ribute, the defuzzified value from the route algorithm will
part, the driver can choose from the term set (very, averagedjve the desired ranking.
and slightly). The definition for them can be seen in Fig. 4. An example is given below. Suppose the driver would
The definition of the membership function gbod very goog like to rank the routes based only on the road attribute
very bad not good bad, andfair is shown in Fig. 5. The first “travel distance.” Therefore, the panel settings of all the other
fuzzy rule defined above is represented as in Fig. 6. attributes should be placed to the far left-hand side (i.e., Don't
Care). Suppose the “travel distance” attribute values of the two
feasible routes are 0.3 and 0.7. Also, let the datum value be
0.1. The graphical representation of the defuzzification method

An example of definition of the membership function for thén these two cases are given by the two figures in Fig. 7. In
output linguistic terms is shown in Fig. 5. The numeric valueach case, the defuzzification procedure has to handle two
of a route attribute is the crisp input to the associated fuzayeas and the defuzzified value gives the correct ranking. If
rule. The fuzzification subnetwork will compute the degree dfhe datum value is not used, the defuzzified value would be
match between the crisp input and the fuzzy set describing tie same as the defuzzification procedure would not be able
meaning of the rule antecedent. The fuzzy set describing tieedistinguish the two cases as the center-of-area would be the
meaning of the rule antecedent is scaled to the same degresaime. This datum value in the defuzzification algorithm can
which the rule antecedent has been matched by the crisp in@$o be viewed as a scaling factor.

B. Linguistic Terms and Rule Firing
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= 0.1
2 = 0.1
-0.8 0.7 ~0.5-0.4
Fig. 7. Defuzzification with the datum (area) would give the correct ranking.
VI. TRAINING OF THE FN NETWORK the fuzzification subnetwork is
In this section, an algorithm to train the FN network is n n
described. The architecture of the FN network for adaptive ej = (ut — ) Zw“ </3i - Zulul/ny), (8)
route selection is shown in Fig. 3. The derivation of the i=1 =1

equations is in the Appendix. The objective is to train the

neural network so that it will refine the membership functions This error term is used to adjust the weights of the fuzzifi-

of the fuzzy systems. A set of learning rules similar to thgation subnetwork using the back-propagation algorithm.

backpropagation learning algorithm can be derived from theWhen the training process has been completed, the new

gradient descent method. membership functions can be recovered from individual sub-
The back-propagation learning algorithm developed fhretwork. From the fuzzification subnetwork, we can obtain

standard multilayer feedforward neural networks can KBe modified membership functions for each linguistic label

extended for the training of the FN network. Here, we assurfié input z;. To obtain the modified membership functions

that a set of desired or optimal input/output pairs is availabl®r the output linguistic labels, we have to set to one

Let u be the output of the network ane be the desired (Where: =1,---.7), all others to zero and obtaim; (where

value. The error function is defined as i=1,---,n).

E= (ut - u)?. ()

2 VII. ADAPTIVE ROUTE SELECTION

) . o ) ALGORITHM OF THE DRG SYSTEM
During the training process, the defuzzification algorithm

needs to be maintained, and, hence,ghare calculated from
(2) usingy;. The rule for updatingu;; in the first layer of the
defuzzification subnetwork can be shown as

In this section, a route ranking/selection algorithm is pre-
sented. An important feature of this algorithm is on the training
of the FN network. With this, the system is made adaptive to
the preference of the driver. This preference is assumed to be
contained in the recent selection cases made by the driver.

) (7) The ARS algorithm is given as follows.

wij(t + 1) = wij(t) + GOéj(U,d - U,) <ﬁz — Zulul/’yQ
1) Route AttributeLet X = {z;} be a set of attributes of

=1

wheree is a |earning rate betweet and 1. 3; and v are a route Also, letn be the number of route attributes.
defined as in (2) and (3) respectively; represents the degree Note that each attribite is normalized to between 0 and
of firing of fuzzy rule; in the fuzzification subnetwork. Note 1. For example

that w;;(t + 1) is updated only ifu; is within the range [0, z1 travel distance (positive attribute; the higher, the

1]. The error terne; that is back-propagated to the output of better);
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2)

3)

4)

5

~

6)

7

8)
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xo travel time (positive attribute; the higher, the
better);

x3 congestion (negative attribute; the smaller, the
better);

x4 toll charge (negative attribute; the smaller, the
better);

x5 difficulty of travel (negative attribute; the smaller,
the better);

xg  scenery (positive attribute; the higher, the better).

It should be noted that the values of this set of attribute
have already been modified by the panel settings spec-
ified by the driver. If the original values of the route
attributes arg#;} and the panel weights afg; }, then

Ty = Pi T4,

Fuzzy RulesFor each of the relevant route attributes
x;, determine the associated fuzzy rule using the given
set of linguistic terms. LeR be this set of fuzzy rules.
Fuzzy-Neural NetworkConstruct an FN network based
on R. Note that all weights in the FN network are
determined by the linguistic terms of the fuzzy rules.
Let W be the set of weights in the network. Set the
learning rates of the FN network. A heuristic value to
use is 0.6 for the defuzzification subnetwork and 0.1
for the fuzzification subnetwork.

Datum Set the datuna of the FN network. This value
should be fixed for the rest of the system operation. A
heuristic value to use is 0.1.

Feasible RoutesFor any given O/D pair specified by
the driver, letS be the set of feasible routes. Lgbe the
number of feasible routes. Henc&,= {s1,s2,--- 54}
Route ScoreFor each feasible route, l&f be the inputs

to the FN network and. be the output of the network,
which is a score of the feasible route. The FN network
can be viewed as a nonlinear mappifigrom X to .
That is

Uj = f(a?{,a?é,a?é,xi,xé,xé) = f(ij)

wherej = 1,---,q.
Route RankingGiven S, we obtainl = {u,;} (j =
1,---,q). Afeasible route ir5 can be ranked according

to its score. This route ranking function is an important
decision-support assistant for the driver. The ranking
is carried out in accordance with the preference of the
driver specified byR.

Adaptive Route Selectiohet s. be the chosen route
by the driver (i.e., theth route is selected). Also, let

be the score of the chosen route, dnde the highest

score amongS. That is
a= f(z°)
b = max{w;}.

5)

Let s be the route with the highest score. Hence

b= f(z").

4)

If @ = b, the driver has accepted the recommendation
from the route selection function. The procedure can
be repeated with another O/D pair by going back to
step 5). Ifa # b, the selection of the driver is different
from the recommendation and the driver has selected
a different route for travel. In this case, two training
pairs are formed

The reasoning is as follows. The route that is recom-
mended by the system is the one which has the highest
score among all the feasible routes. If this route is not
accepted by the driver, the score of this route should
have been lowered. On the other hand, the score of
the chosen route should have been higher to reflect the
preference of the driver. Of course, it is not clear how
much the scores should have been changed. Thus one
can argue that the chosen route should have been given
the highest scoré, whereas the declined route can be
given a score equal t@, which is lowered than before.
This is reasonable as the interchange will also keep the
numeric values of the FN network to scale.

Training the FN NetworkThe two training pairs that
are formed are used as input—output training pairs of
the FN network. Note that each case of deviation from
the recommendation will form two training pairs. On
the frequency of training the FN network, it can be
carried out after every case(s), where can be set at
the beginning of the system operation.

New WeightsStoreW in a data file associated with the
driver. Go back to step 5).

To summarize, the route selection procedures are as follows.
1) The system is setup by a driver inputing his fuzzy rules

on route selection using a set of predefined linguistic
terms. This is the initial setup of the system and an
FN network is formed. The weights of the FN net-
work are determined from the shape of the linguistic
terms.

When planning a trip or during a trip, the driver can
modify the relative importance of the various route
attributes using some settings on a panel. This is a
convenient way for specifying driver’s preference, which
could be useful for planning a special-purpose trip.

The driver inputs his origin and destination to the
system, and a set of feasible routes is obtained.

For each feasible route, the attribute scores are inputs
to the FN network, and the output is an overall score
of that feasible route. With the computation of this
overall score, a ranking of the set of feasible routes is
performed.

The driver can accept the recommendation from the
system. Alternatively, he can choose an alternate route.
Any derivation from the recommendation will be stored,
and this information is used for forming the training
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pairs of the FN network. Hence, the system can be maHience
adaptive to the decision-making of the driver. L3

(i.e., routek has the highest score from the FN network)
¢ =4 (i.e., routec is selected by the driver)

A. Example on the Adaptive Feature of the FN Network @ = 0.115851

An example on the use of the FN network is given in this? = 0215 649.
section. Suppose the number of feasible routes is five. Thel’wo training pairs are formed
FN network would give a score to each feasible route, and
a ranking is resulted. In order to show the adaptive ability of z°,b)
the network, suppose we have four cases of deviation from the (2", a)
recommendation of the FN network. In each case, the routes ’
are ranked according to the fuzzy rules previously setup by ti@ich are
driver. However, in this example, the driver has deliberately
changed his route choice and selected the route with the best (z*,0.215649)
scenery in all the four cases. (z%,0.115851)

For example, in the first case, five feasible routes are
presented to the driver. The route attributes are given at the
bottom of the page.

Using the same notation as in the ARS algorithm ([0.45,0.3,0.4,0.3,0.1, 0.9],0.215 649)

([0.85,0.5,0.2,0.2,0.3, 0.5],0.115851).

VIII. A PPLICATION EXAMPLE OF THE FN NETWORK

m = 6 (i.e., the number of road attributes)

d=10.1 (i.e., the datum of the FN network) B. Training of the FN Network

g =5 (i.e., the number of feasible routes) The following input—output pairs are used for training the
z' =1[0.6,1.0,0.3,0.6,0.3,0.3] FN Network. They are collected from the four deviation cases
72 = [1.0,0.8,0.5,0.4,0.2,0.5] made by the driver
 =[0.85,0.5,0.2,0.2,0.3,0.5] (0.45 0.3 0.4 0.3 0.1 0.9], 0.215649)
.f4 — [0.45 0.3 0.4 0.3 0.1 0.9] ([0.85 0.5 0.2 0.2 0.3 0.5], 0.115 851)

. T (0.5 0.8 0.6 0.2 0.3 0.7], 0.214050)
7° =[0.4,0.25,0.45,0.35,0.15,0.85].

(0.7 1.0 0.2 0.4 0.7 0.3], 0.163516)

. . . (0.7 0.8 05 0.2 0.3 0.8], 0.258547
Note that Route 1 is the route with the shortest travel tim ] )

. . . . 0.8 0.3 0.3 0.2 0.6], 0.201303)
Route 2 is the route with the shortest travel distance. Rout
. . . 0.7 1.0 0.4 0.7 0.7 0.7], 0.213644)
is the route with the best scenery. Route 5 is the route wi

. 0.85 0.2 0.6 0.5 0.4], 0.157301).

the second best scenery. From the set of fuzzy rules specified
before, the score for each feasible route is obtained from t&e

Testing of the FN N rk
FN network. The scores are as follows: esting of the etwo

For the case 1 example described in Section VIII-Al, the

y1 = f(z') = 0.207638 attributes of the five feasible routes are provided for the newly

yo = f(7%) = 0.201110 adapted FN network. New scores are obtained and given at
a . the bottom of the next page.

ys = [(27) = 0.215649 It is noticed that the route with the best scenery is now

ys = f(z*) = 0.115851 given the highest score, followed by the route with the second

ys = f(2°) = 0.072935. best scenery. This is what would be expected from an adapted

system. That is, if the same route choice situation arises in
Note that Route 3 has the highest score. Here, suppose tthe future, the route selection function would offer the desired
driver would like the route with the best scenery, i.e., Route danking of the feasible routes.

distance time congestion toll difficulty scenery

Route 1: 0.6 1.0 0.3 0.6 0.3 0.3
Route 2: 1.0 0.8 0.5 0.4 0.2 0.5
Route 3: 0.85 0.5 0.2 0.2 0.3 0.5
Route 4: 0.45 0.3 0.4 0.3 0.1 0.9
Route 5: 0.4 0.25 0.45 0.35 0.15 0.85
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Fig. 8. Modified membership function of the route attributes.

D. Modified Membership Function is trying to reduce the importance of those five route at-

The modified membership function of the route attributd&§Putes.
is shown in Fig. 8. It can be noticed that the peaks of Onthe other hand, the membership function of the “scenery”

the membership functions such as distance, congestion, tia@(ibute has been strengthened as we can observe additional
difficulty and toll have all been lowered. In addition, somaveights being added on the positive scale.

“counterweights” on those membership functions can be ob-From the modification to the membership functions of the
served. Those two observations suggest that the FN netw&ii network, we can observe that the route selection system

new score
Route 1: old score = 0.207 638 --- 0.187520
Route 2: old score = 0.201110 --- 0.169031
Route 3: old score = 0.215649 (best score) ---0.127 172
Route 4: old score = 0.115851 (best scenery) —0.206 356
Route 5: old score = 0.072935 (second best scenery) --- 0.197 862
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is trying to be adaptive to the recent changes in the drivessibnetwork, this is denoted by;; which are the initial weights
selection of routes. It has correctly identified that the driver ishen implementing the network. If the degree of firing rilg
giving more preference to routes with the best scenery. Aftisra;, we denote the degree of membershiplhy, (u;) where
the training of FN network with the data from four cases of det

those choices, the FN network has adapted itself and is giving Uc;(wi) = aj - ey (wi)-

more preference to routes with good scenery. At output let us define
U = ui)

E. Implementation

The FN network described above and the adaptive route se-
lection algorithm has been implemented using the C program-

ming language. This work will form an important componen/herem is the number of rules. .
of an intelligent route navigation system. The equation for output defuzzification using the center-of-

area (COA) method is given by

pi =Y Uc,(ui) ©9)
j=1

IX. CONCLUSION - Eiil Wifh (10)
A useful routing system should have the capability to Dim Hi
support the driver effectively in deciding on an optimum route - u;
to his preference. In this paper, aptimum route search = Z“Z(W) (11)
function in a typical in-car navigation system is developed. Zl =
The main contrlbutlo'ns of this paper are gs follows. N _ Z“i 3, (12)
« A FN approach is used for the modeling of the decision- im1
making process in route choice of a driver. here
« The approach is general in the sense that the fuzzy rulls
can handle any number of feasible routes when given an g=2 (13)
O/D pair. v
e The approach can also handle multiple route selecti@md
criteria (travel time, travel distance, congestion, scenery, n
etc.). Y= e (14)
¢ Six primary criteria for route selection are defined in this im1
paper. They serve as the fundamental factors in an ARS
algorithm. APPENDIX I
e The most important feature of the ARS algorithm is its DERIVATION OF THE LEARNING ALGORITHM

adaptive nature. The developed FN network can be trainedyjith reference to (1)—(6) in the paper, first we differentiate
(made adaptive) with the information on the drlver’sﬁi w.rt v in (2)

deviation from some previous recommendations of the

FN network. An example is included in this paper to —
show this feature. av ~

To summarize, the route selection algorithm is orientated From (3), differentiatey w.r.t. u, wherek =1,.--,n
on the driver's preference. AfrN approach is used to

8@ — Uy
— 5

(15)

represent the correlation of the attributes with the driver’s route Ll =1. (16)
selection. A recommendation or route ranking can be provided Fpin
to the driver. Based on a training of the FN net on the driver’'s From (15) and (16)
choice, the route selection function can be made adaptive to B —u
the decision-making of the driver. This methodology paves the 5 - = — (17)
way for more intelligent navigation systems. Hk v
From (4)
APPENDIX | Ju
DEFUZZIFICATION ALGORITHM 9B = Hi (18)
In this section, the equation of the defuzzification algorithm du =3 (19)
is derived. O "
LetU = {uy,uz, --,u,, - -, u,  be a set of discrete values From (5)
within the range of output in a fuzzy system. Also, Jet,
be the membership function of the output linguistic tefin O — . (20)
defined for ruleR2;. Now, suppose the degree of firing rule Ow;; !
Rj be Q. Now

With the notation defined aboveyc,(u;) is the degree
of membership ofC; at v = w;. In the defuzzification w=w(p, p2, 1,02, ).
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Therefore
du _z":a_ 8u1 du A0,
8wij o =1 8 8w“ 8/31 8w“
ou _ " du au ou 8[31 O
8wij o z:: 8 8w“ Z Z 8/3; 8uk 8w“
However
Apur _
awi]’

for k # . This means that; is connected only to weights

Wij (J = 17" '7m) Only'
Therefore
Ou  Ou Oy, Z du 9p8; du;
8wij o 8/% 8wi1 8/31 8/% 8w“
Hence
—y
aw“ = a1+2|: '7'aj:|

from (17), (4), (18), and (19)

—0F
tJ

Hence, from (6) and (20)

(21)

(22)

Awij = aj(u — ) </3i - z”: Uzul/72> (23)

=1
e.g.

Z ou 9B
8[3; ngg

8u 8u2

Z du Oy
Oy Owas

8u 8u1

ngg

du Jus

3—m Owss
D 0,
8[32 ngg

D O Op

91 Opa Owas

D 95 O

8/33 8u2 8w23

aﬂl aw23
Du 9y
8[31 ngg

u_Op

- O Owas
D O Op
8/32 8/@ 8w23

v

H1u1 22 H3u3
- |- (B e

APPENDIX IlI
DERIVATION OF THE ERROR TERM

JE
80@» o

C; = —

_z”: [8E i N OF 8/37;}
im1 8/% 80@» 8@ 80@»
Then

9E du 9p
du 93; du

R [P o
~ Ou Op; Oy

373 Owss
ou o5
033 Jwas

]}

(24)

(25)
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That is,

dE du Oy,
AQu Ay day; i

Z JdE Ju 305; 8ul
A BB 8041

n
=1

But

o
du
Ju
i
i
8a 7
Ju
b
ap

2
ik
PN /v

=

wherek = 1,---.n

Therefore
ej = (u B — ZWW/’YQ Wi - (26)
=1 =1
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