28,022 research outputs found

    Implications of Anomalous U(1) Symmetry in Unified Models: the Flipped SU(5) x U(1) Paradigm

    Get PDF
    A generic feature of string-derived models is the appearance of an anomalous Abelian U(1)_A symmetry which, among other properties, constrains the Yukawa couplings and distinguishes the three families from each other. In this paper, we discuss in a model-independent way the general constraints imposed by such a U(1)_A symmetry on fermion masses, R-violating couplings and proton-decay operators in a generic flipped SU(5) x U(1)' model. We construct all possible viable fermion mass textures and give various examples of effective low-energy models which are distinguished from each other by their different predictions for B-, L- and R-violating effects. We pay particular attention to predictions for neutrino masses, in the light of the recent Super-Kamiokande data.Comment: 28 pages, reference adde

    Virtual QCD corrections to Higgs boson plus four parton processes

    Full text link
    We report on the calculation of virtual processes contributing to the production of a Higgs boson and two jets in hadron-hadron collisions. The coupling of the Higgs boson to gluons, via a virtual loop of top quarks, is treated using an effective theory, valid in the large top quark mass limit. The calculation is performed by evaluating one-loop diagrams in the effective theory. The primary method of calculation is a numerical evaluation of the virtual amplitudes as a Laurent series in D−4D-4, where DD is the dimensionality of space-time. For the cases H→qqˉqqˉH \to q\bar{q}q\bar{q} and H→qqˉq′qˉ′H \to q\bar{q}q'\bar{q}' we confirm the numerical results by an explicit analytic calculation.Comment: 21 pages, 2 figures. v2 modifies the text to agree with published version and corrects typos in the analytical expressions for the four quark amplitude

    Functional assessment in older people

    Get PDF

    What if the Higgs Boson Weighs 115 GeV?

    Get PDF
    If the Higgs boson indeed weighs about 114 to 115 GeV, there must be new physics beyond the Standard Model at some scale \la 10^6 GeV. The most plausible new physics is supersymmetry, which predicts a Higgs boson weighing \la 130 GeV. In the CMSSM with R and CP conservation, the existence, production and detection of a 114 or 115 GeV Higgs boson is possible if \tan\beta \ga 3. However, for the radiatively-corrected Higgs mass to be this large, sparticles should be relatively heavy: m_{1/2} \ga 250 GeV, probably not detectable at the Tevatron collider and perhaps not at a low-energy e^+ e^- linear collider. In much of the remaining CMSSM parameter space, neutralino-stau coannihilation is important for calculating the relic neutralino density, and we explore implications for the elastic neutralino-nucleon scattering cross section.Comment: 17 pages, 5 eps figure

    DiBELLA: Distributed long read to long read alignment

    Get PDF
    We present a parallel algorithm and scalable implementation for genome analysis, specifically the problem of finding overlaps and alignments for data from "third generation" long read sequencers [29]. While long sequences of DNA offer enormous advantages for biological analysis and insight, current long read sequencing instruments have high error rates and therefore require different approaches to analysis than their short read counterparts. Our work focuses on an efficient distributed-memory parallelization of an accurate single-node algorithm for overlapping and aligning long reads. We achieve scalability of this irregular algorithm by addressing the competing issues of increasing parallelism, minimizing communication, constraining the memory footprint, and ensuring good load balance. The resulting application, diBELLA, is the first distributed memory overlapper and aligner specifically designed for long reads and parallel scalability. We describe and present analyses for high level design trade-offs and conduct an extensive empirical analysis that compares performance characteristics across state-of-the-art HPC systems as well as a commercial cloud architectures, highlighting the advantages of state-of-the-art network technologies

    Einstein's Real "Biggest Blunder"

    Full text link
    Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term \Lambda, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein-Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments, and nodes.Comment: 4 pages, LaTeX, 11 references, Honorable Mention in 2012 Gravity Research Foundation Essay Award

    Irrotational dust with Div H=0

    Get PDF
    For irrotational dust the shear tensor is consistently diagonalizable with its covariant time derivative: σab=0=σ˙ab,  a≠b\sigma_{ab}=0=\dot{\sigma}_{ab},\; a\neq b, if and only if the divergence of the magnetic part of the Weyl tensor vanishes: div H=0div~H = 0. We show here that in that case, the consistency of the Ricci constraints requires that the magnetic part of the Weyl tensor itself vanishes: Hab=0H_{ab}=0.Comment: 19 pages. Latex. Also avaliable at http://shiva.mth.uct.ac.za/preprints/text/lesame2.te

    On Shear-Free perturbations of FLRW Universes

    Full text link
    A surprising exact result for the Einstein Field Equations is that if pressure-free matter is moving in a shear-free way, then it must be either expansion-free or rotation-free. It has been suggested this result is also true for any barotropic perfect fluid, but a proof has remained elusive. We consider the case of barotropic perfect fluid solutions linearized about a Robertson-Walker geometry, and prove that the result remains true except for the case of a specific highly non-linear equation of state. We argue that this equation of state is non-physical, and hence the result is true in the linearized case for all physically realistic barotropic perfect fluids. This result, which is not true in Newtonian cosmology, demonstrates that the linearized solutions, believed to result in standard local Newtonian theory, do not always give the usual behaviour of Newtonian solutions
    • …
    corecore