127 research outputs found
A skills-matching perspective on talent management: developing strategic agility
Despite two decades of evolution as an area of research and practice, talent management faces ongoing criticism for being overly static in its approach, offering little in terms of enabling strategic agility. This is problematic as organizations increasingly rely on strategic agility to manage their dynamic business operations. Drawing on matching theory and adopting an agility lens, we explore the link between talent management and strategic agility. Through a qualitative research design, encompassing 34 interviews in 15 organizations, we explicate a skills-matching perspective on talent management, including initial and dynamic skills-matching in external and internal labor markets. Through this process, organizations can build a set of dynamic capabilities, underlying two meta-capabilities, strategic sensitivity and resource fluidity, which enable strategic agility. In doing so, we portray skills-matching as an illustration of a processual view on talent management and create a model of developing strategic agility through skills-matching, responsive to external and internal demands
Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films
Low-angle grain boundaries with misorientation angles theta < 5 degrees in
optimally doped thin films of YBCO are investigated by magnetooptical imaging.
By using a numerical inversion scheme of Biot-Savart's law the critical current
density across the grain boundary can be determined with a spatial resolution
of about 5 micrometers. Detailed investigation of the spatially resolved flux
density and current density data shows that the current density across the
boundary varies with varying local flux density. Combining the corresponding
flux and current pattern it is found that there exists a universal dependency
of the grain boundary current on the local flux density. A change in the local
flux density means a variation in the flux line-flux line distance. With this
knowledge a model is developped that explains the flux-current relation by
means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure
Exact analytical solution of the problem of current-carrying states of the Josephson junction in external magnetic fields
The classical problem of the Josephson junction of arbitrary length W in the
presence of externally applied magnetic fields (H) and transport currents (J)
is reconsidered from the point of view of stability theory. In particular, we
derive the complete infinite set of exact analytical solutions for the phase
difference that describe the current-carrying states of the junction with
arbitrary W and an arbitrary mode of the injection of J. These solutions are
parameterized by two natural parameters: the constants of integration. The
boundaries of their stability regions in the parametric plane are determined by
a corresponding infinite set of exact functional equations. Being mapped to the
physical plane (H,J), these boundaries yield the dependence of the critical
transport current Jc on H. Contrary to a wide-spread belief, the exact
analytical dependence Jc=Jc(H) proves to be multivalued even for arbitrarily
small W. What is more, the exact solution reveals the existence of unquantized
Josephson vortices carrying fractional flux and located near one of the
junction edges, provided that J is sufficiently close to Jc for certain finite
values of H. This conclusion (as well as other exact analytical results) is
illustrated by a graphical analysis of typical cases.Comment: 21 pages, 9 figures, to be published in Phys. Rev.
A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam
The paper reports on a high precision equipment designed to modify over
3-dimensions (3D) by means of high-energy gold ions the local properties of
thin and thick films. A target-moving system aimed at creating patterns across
the volume is driven by an x-y writing protocol that allows one to modify beam
sensitive samples over micrometer-size regions of whatever shape. The apparatus
has a mechanical resolution of 15 nm. The issue of the local fluence
measurement has been particularly addressed. The setup has been checked by
means of different geometries patterned on beam sensitive sheets as well as on
superconducting materials. In the last case the 3D modification consists of
amorphous nanostructures. The nanostructures create zones with different
dissipative properties with respect to the virgin regions. The main analysis
method consists of magneto-optical imaging that provides local information on
the electrodynamics of the modified zones. Features typical of non-linear
current flow hint at which pattern geometry is more functional to applications
in the framework of nanostructures across superconducting films.Comment: 7 page
Current density inhomogeneity throughout the thickness of superconducting films and its effect on their irreversible magnetic properties
We calculate the distribution of the current density in superconducting
films along the direction of an external field applied perpendicular to the
film plane. Our analysis reveals that in the presence of bulk pinning is
inhomogeneous on a length scale of order the inter vortex distance. This
inhomogeneity is significantly enhanced in the presence of surface pinning. We
introduce new critical state model, which takes into account the current
density variations throughout the film thickness, and show how these variations
give rise to the experimentally observed thickness dependence of and
magnetic relaxation rate.Comment: RevTex, 9 PS figures. To appear in Phys. Rev.
Recommended from our members
Flux line lattice structure and behavior in antiphase boundary free vicinal YBa2Cu3O7-delta thin films
Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics
Dynamic observation of manganese adatom mobility at perovskite oxide catalyst interfaces with water
Real time in situ microscopy imaging of surface structure and atom dynamics of heterogeneous catalysts is an important step for understanding reaction mechanisms. Here, using in situ environmental transmission electron microscopy ETEM , we directly visualize surface atom dynamics at manganite perovskite catalyst surfaces for oxygen evolution reaction OER , which are amp; 8805;20 times faster in water than in other ambients. Comparing 001 surfaces of La0.6Sr0.4MnO3 and Pr0.67Ca0.33MnO3 with similar initial manganese valence state and OER activity, but very different OER stability, allows us to distinguish between reversible surface adatom dynamics and irreversible surface defect chemical reactions. We observe enhanced reversible manganese adatom dynamics due to partial solvation in adsorbed water for the highly active and stable La0.6Sr0.4MnO3 system, suggesting that aspects of homogeneous catalysis must be included for understanding the OER mechanism in heterogeneous catalysi
Strong Pinning in High Temperature Superconductors
Detailed measurements of the critical current density jc of YBa2Cu3O7 films
grown by pulsed laser deposition reveal the increase of jc as function of the
filmthickness. Both this thickness dependence and the field dependence of the
critical current are consistently described using a generalization of the
theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024
(1991)]. From the model, we deduce values of the defect density (10^21 m^-3)
and the elementary pinning force, which are in good agreement with the
generally accepted values for Y2O3-inclusions. In the absence of clear evidence
that the critical current is determined by linear defects or modulations of the
film thickness, our model provides an alternative explanation for the rather
universal field dependence of the critical current density found in YBa2Cu3O7
films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002
The temperature-dependent magnetization profile across an epitaxial bilayer of ferromagnetic La2/3Ca1/3MnO3 and superconducting YBa2Cu3O7-d
Epitaxial bilayers of ferromagnetic La2/3Ca1/3MnO3 (LCMO) and superconducting
YBa2Cu3O7-d (YBCO) have been grown on single-crystalline SrTiO3 (STO)
substrates by pulsed laser deposition. The Manganese magnetization profile
across the FM layer has been determined with high spatial resolution at low
temperatures by X-ray resonant magnetic reflectivity (XRMR). It is found that
not only the adjacent superconductor but also the substrate underneath
influences the magnetization of the LCMO film at the interfaces at low
temperatures. Both effects can be investigated individually by XRMR
Interplay of dendritic avalanches and gradual flux penetration in superconducting MgB2 films
Magneto-optical imaging was used to study a zero-field-cooled MgB2 film at
9.6K where in a slowly increasing field the flux penetrates by abrupt formation
of large dendritic structures. Simultaneously, a gradual flux penetration takes
place, eventually covering the dendrites, and a detailed analysis of this
process is reported. We find an anomalously high gradient of the flux density
across a dendrite branch, and a peak value that decreases as the applied field
goes up. This unexpected behaviour is reproduced by flux creep simulations
based on the non-local field-current relation in the perpendicular geometry.
The simulations also provide indirect evidence that flux dendrites are formed
at an elevated local temperature, consistent with a thermo-magnetic mechanism
of the instabilityComment: 5 pages, 5 figures, submitted to Supercond. Sci. Techno
- …