13 research outputs found

    Cosmological Analogues of the Bartnik--McKinnon Solutions

    Full text link
    We present a numerical classification of the spherically symmetric, static solutions to the Einstein--Yang--Mills equations with cosmological constant Λ\Lambda. We find three qualitatively different classes of configurations, where the solutions in each class are characterized by the value of Λ\Lambda and the number of nodes, nn, of the Yang--Mills amplitude. For sufficiently small, positive values of the cosmological constant, \Lambda < \Llow(n), the solutions generalize the Bartnik--McKinnon solitons, which are now surrounded by a cosmological horizon and approach the deSitter geometry in the asymptotic region. For a discrete set of values Λreg(n)>Λcrit(n)\Lambda_{\rm reg}(n) > \Lambda_{\rm crit}(n), the solutions are topologically 33--spheres, the ground state (n=1)(n=1) being the Einstein Universe. In the intermediate region, that is for \Llow(n) < \Lambda < \Lhig(n), there exists a discrete family of global solutions with horizon and ``finite size''.Comment: 16 pages, LaTeX, 9 Postscript figures, uses epsf.st

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit

    Escape of Gases from Planetary Atmospheres

    No full text

    Recent Spectroscopic Determinations

    No full text

    Proposed Observation of Mercury during the Solar Eclipse

    No full text

    The Habitability of Mars

    No full text
    n/

    The Use of the Words “Weight” and “Mass”

    No full text

    Receiving Telephones

    No full text

    Escape of Gases from Planetary Atmospheres

    No full text
    corecore