9,215 research outputs found

    Collision-induced galaxy formation: semi-analytical model and multi-wavelength predictions

    Full text link
    A semi-analytic model is proposed that couples the Press-Schechter formalism for the number of galaxies with a prescription for galaxy-galaxy interactions that enables to follow the evolution of galaxy morphologies along the Hubble sequence. Within this framework, we calculate the chemo-spectrophotometric evolution of galaxies to obtain spectral energy distributions. We find that such an approach is very successful in reproducing the statistical properties of galaxies as well as their time evolution. We are able to make predictions as a function of galaxy type: for clarity, we restrict ourselves to two categories of galaxies: early and late types that are identified with ellipticals and disks. In our model, irregulars are simply an early stage of galaxy formation. In particular, we obtain good matches for the galaxy counts and redshift distributions of sources from UV to submm wavelengths. We also reproduce the observed cosmic star formation history and the diffuse background radiation, and make predictions as to the epoch and wavelength at which the dust-shrouded star formation of spheroids begins to dominate over the star formation that occurs more quiescently in disks. A new prediction of our model is a rise in the FIR luminosity density with increasing redshift, peaking at about z3z\sim 3, and with a ratio to the local luminosity density ρL,ν(z=zpeak)/ρL,ν(z=0)\rho_{L,\nu} (z = z_{peak})/ \rho_{L,\nu} (z = 0) about 10 times higher than that in the blue (B-band) which peaks near z2z\sim 2.Comment: Minor changes, replaced to match accepted MNRAS versio

    Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints

    Get PDF
    The inapplicability of amino acid covariation methods to small protein families has limited their use for structural annotation of whole genomes. Recently, deep learning has shown promise in allowing accurate residue-residue contact prediction even for shallow sequence alignments. Here we introduce DMPfold, which uses deep learning to predict inter-atomic distance bounds, the main chain hydrogen bond network, and torsion angles, which it uses to build models in an iterative fashion. DMPfold produces more accurate models than two popular methods for a test set of CASP12 domains, and works just as well for transmembrane proteins. Applied to all Pfam domains without known structures, confident models for 25% of these so-called dark families were produced in under a week on a small 200 core cluster. DMPfold provides models for 16% of human proteome UniProt entries without structures, generates accurate models with fewer than 100 sequences in some cases, and is freely available.Comment: JGG and SMK contributed equally to the wor

    Stabilization of grid frequency through dynamic demand control

    Get PDF
    Frequency stability in electricity networks is essential to the maintenance of supply quality and security. This paper investigates whether a degree of built-in frequency stability could be provided by incorporating dynamic demand control into certain consumer appliances. Such devices would monitor system frequency (a universally available indicator of supply-demand imbalance) and switch the appliance on or off accordingly, striking a compromise between the needs of the appliance and the grid. A simplified computer model of a power grid was created incorporating aggregate generator inertia, governor action and load-frequency dependence plus refrigerators with dynamic demand controllers. Simulation modelling studies were carried out to investigate the system's response to a sudden loss of generation, and to fluctuating wind power. The studies indicated a significant delay in frequency-fall and a reduced dependence on rapidly deployable backup generation

    Topology and Chiral Symmetry in QCD with Overlap Fermions

    Get PDF
    We briefly review the overlap formalism for chiral gauge theories, the overlap Dirac operator for massless fermions and its connection to domain wall fermions. We describe properties of the overlap Dirac operator, and methods to implement it numerically. Finally, we give some examples of quenched calculations of chiral symmetry breaking and topology with overlap fermions.Comment: 12 pages with 6 ps figures; crckapb.sty included; to appear in the proceedings of the workshop "Lattice Fermions and Structure of the Vacuum", Oct 5-9, Dubna, Russi

    A Role for Sunspots in Explaining Endogenous Fluctutations in Illegal Immigration

    Get PDF
    In this paper we provide an alternative explanation for why illegal immigration can exhibit substantial fluctuations despite a constant wage gap. We develop a model economy in which migrants make decisions in the face of uncertain border enforcement and lump-sum transfers from the host country. The uncertainty is extrinsic in nature, a sunspot, and arises as a result of ambiguity regarding the commodity price of money. Migrants are restricted from participating in state-contingent insurance markets in the host country, whereas host country natives are not. We establish the existence of sunspot equilibria that are not mere randomizations over certainty equilibria. Volatility in migration flows stems from two distinct sources: the tension between transfers inducing migration and enforcement discouraging it and secondly the existence of a sunspot. Finally, we examine the impact of a change in tax/transfer policies by the government on migration.Sunspots, Immigration, International Migration
    corecore