A semi-analytic model is proposed that couples the Press-Schechter formalism
for the number of galaxies with a prescription for galaxy-galaxy interactions
that enables to follow the evolution of galaxy morphologies along the Hubble
sequence. Within this framework, we calculate the chemo-spectrophotometric
evolution of galaxies to obtain spectral energy distributions. We find that
such an approach is very successful in reproducing the statistical properties
of galaxies as well as their time evolution. We are able to make predictions as
a function of galaxy type: for clarity, we restrict ourselves to two categories
of galaxies: early and late types that are identified with ellipticals and
disks. In our model, irregulars are simply an early stage of galaxy formation.
In particular, we obtain good matches for the galaxy counts and redshift
distributions of sources from UV to submm wavelengths. We also reproduce the
observed cosmic star formation history and the diffuse background radiation,
and make predictions as to the epoch and wavelength at which the dust-shrouded
star formation of spheroids begins to dominate over the star formation that
occurs more quiescently in disks. A new prediction of our model is a rise in
the FIR luminosity density with increasing redshift, peaking at about z∼3, and with a ratio to the local luminosity density ρL,ν(z=zpeak)/ρL,ν(z=0) about 10 times higher than that in the blue
(B-band) which peaks near z∼2.Comment: Minor changes, replaced to match accepted MNRAS versio