76 research outputs found
Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor
Research advancement has spurred the usage of electroencephalography (EEG)-based neural oscillatory rhythms as a biomarker to complement clinical rehabilitation strategies for motor skill recovery in stroke patients. However, the inevitable contamination of EEG signals with artifacts from various sources limits its utilization and effectiveness. Thus, the integration of Independent Component Analysis (ICA) and Independent Component Label (ICLabel) has been widely employed to separate neural activity from artifacts. A crucial step in the ICLabel preprocessing pipeline is the artifactual ICs rejection threshold (TH) parameter, which determines the overall signal's quality. For instance, selecting a high TH will cause many ICs to be rejected, thereby leading to signal over cleaning, and choosing a low TH may result in under-cleaning of the signal. Toward determining the optimal TH parameter, this study investigates the effect of six different TH groups (NO-TH and TH1-TH6) on EEG signals recorded from post-stroke patients who performed four distinct motor imagery tasks including wrist and grasping movements. Utilizing the EEG-beta band signal at the brain's sensorimotor cortex, the performance of the TH groups was evaluated using three notable EEG quantifiers. Overall, the obtained result shows that the considered THs will significantly alter neural oscillatory patterns. Comparing the performance of the TH-groups, TH-3 with a confidence level of 60% showed consistently stronger signal desynchronization and lateralization. The correlation result shows that most of the electrode pairs with high correlation values are replicable across all the MI tasks. It also revealed that brain activity correlates linearly with distance, and a strong correlation between electrode pairs is independent of the different brain cortices
Investigation of open channel flow with unsubmerged rigid vegetation by the lattice Boltzmann method
YesAquatic vegetation can significantly affect flow structure, sediment transport, bed scour and water quality in rivers, lakes, reservoirs and open channels. In this study, the lattice Boltzmann method is applied for performing the two dimensional numerical simulation of the flow structure in a flume with rigid vegetation. A multi-relaxation time model is applied to improve the stability of the numerical scheme for flow with high Reynolds number. The vegetation induced drag force is added in lattice Boltzmann equation model with the algorithm of multi-relaxation time in order to improve the simulation accuracy,. Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments. Analysis of the simulated and experimentally measured flow field shows that the numerical simulation can satisfactorily reproduce the laboratory experiments, indicating that the proposed lattice Boltzmann model has high accuracy for simulating flow-vegetation interaction in open channel.National Natural Science Foundation of China (grant number: 11861003 and 11761005
Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review
Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main
structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, elec-
trocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not limited to pure metals and conventional metallic alloys, and a wide range of materials are currently processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanisms of geological and astronomical phenomena and the origin of life
Phylogenetic Analysis and Taxonomic Delimitation of the “Hairy-Fig” Complex of Ficus sect. Eriosycea (Moraceae) in China.
The hairy-fig complex of Ficus sect. Eriosycea (Moraceae) includes F. hirta, F. esquiroliana, F. simplicissima and a Chinese entity misidentified as F. fulva. These species are difficult to delimit because of the continuously varying morphological characteristics. In order to re-evaluate the status of these taxa, herbarium specimens were extensively examined and 118 samples of the complex were selected for anatomical and molecular analysis. ITS, ETS and trnH-psbA were applied for constructing phylogenetic trees and fluorescently labeled microsatellite primers were screened for cluster analysis. The results showed that all the four species show continuously variable morphological characters and make up one well supported clade on the phylogenetic trees, and that this similar genetic background was confirmed by the cluster analysis. In conclusion, all the four taxa of the hairy-fig complex recorded in China should be combined as one species F. simplicissima, with two varieties: var. simplicissima and var. roxburghii (Miquel) Hong-Qing Li & Jing Lu
CottonGen: a genomics, genetics and breeding database for cotton research
CottonGen (
http://www.cottongen.org
) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of
Gossypium raimondii
are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST
CottonGen: a genomics, genetics and breeding database for cotton research
CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST
- …