55,484 research outputs found

    Negative Differential Resistivity and Positive Temperature Coefficient of Resistivity effect in the diffusion limited current of ferroelectric thin film capacitors

    Full text link
    We present a model for the leakage current in ferroelectric thin- film capacitors which explains two of the observed phenomena that have escaped satisfactory explanation, i.e. the occurrence of either a plateau or negative differential resistivity at low voltages, and the observation of a Positive Temperature Coefficient of Resistivity (PTCR) effect in certain samples in the high-voltage regime. The leakage current is modelled by considering a diffusion-limited current process, which in the high-voltage regime recovers the diffusion-limited Schottky relationship of Simmons already shown to be applicable in these systems

    The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    Get PDF
    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet

    Modelling biological invasions: individual to population scales at interfaces

    Get PDF
    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility

    Generational research: between historical and sociological imaginations

    Get PDF
    This paper reflects on Julia Brannen’s contribution to the development of theory and methods for intergenerational research. The discussion is contextualised within a contemporary ‘turn to time’ within sociology, involving tensions and synergies between sociological and historical imagination. These questions are informed by a juxtaposition of Brannen’s four-generation study of family change and social historian Angela Davis’s exploration women and the family in England between 1945 and 2000. These two studies give rise to complementary findings, yet have distinctive orientations towards the status and treatment of sources, the role of geography in research design and limits of generalisatio

    Calculating the transfer function of noise removal by principal component analysis and application to AzTEC observations

    Get PDF
    Instruments using arrays of many bolometers have become increasingly common in the past decade. The maps produced by such instruments typically include the filtering effects of the instrument as well as those from subsequent steps performed in the reduction of the data. Therefore interpretation of the maps is dependent upon accurately calculating the transfer function of the chosen reduction technique on the signal of interest. Many of these instruments use non-linear and iterative techniques to reduce their data because such methods can offer improved signal-to-noise over those that are purely linear, particularly for signals at scales comparable to that subtended by the array. We discuss a general approach for measuring the transfer function of principal component analysis (PCA) on point sources that are small compared to the spatial extent seen by any single bolometer within the array. The results are applied to previously released AzTEC catalogues of the COSMOS, Lockman Hole, Subaru XMM-Newton Deep Field, GOODS-North and GOODS-South fields. Source flux density and noise estimates increase by roughly +10 per cent for fields observed while AzTEC was installed at the Atacama Submillimeter Telescope Experiment and +15-25 per cent while AzTEC was installed at the James Clerk Maxwell Telescope. Detection significance is, on average, unaffected by the revised technique. The revised photometry technique will be used in subsequent AzTEC releases.Comment: 14 pages, 4 figure

    Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection

    Get PDF
    Urinary tract infections: targeting enzymes might help Identifying bacterial and host enzymes that support biofilm formation may help prevent urinary tract infections caused by catheters. Enterococcus faecalis bacteria is a leading cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infections. Michael Caparon and colleagues at Washington University School of Medicine in Missouri, USA, studied these infections in mice. They examined the effects of two protein-degrading enzymes, both from the bacterium and one can be activated by urine trypsin-like protease from the animals. Mutations that impaired either one of the enzymes had no effect on the infection, but when both the bacterial enzymes were impaired by mutation the formation of biofilms was significantly reduced. Treating the mice with chemicals that inhibited both bacterial and host enzymes dramatically reduced catheter-induced inflammation and related problems. This suggests drugs targeting these enzymes could be useful in clinical care

    Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence

    Get PDF
    Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: points of occurrence (specific geographical coordinates where a species has been observed), and expert-prepared range maps. Each form has potential short-comings: range maps tend to overestimate the true occurrence of a species, whereas occurrence points (because of their frequent non-random spatial distribution) tend to underestimate it. Whereas previous comparisons of the two forms have focused on how they may differ when estimating species richness, less attention has been paid to the extent to which the two forms actually differ in their representation of a species’ environmental associations. We assess such differences using the globally distributed avian order Galliformes (294 species). For each species we overlaid range maps obtained from IUCN and point-of-occurrence data obtained from GBIF on global maps of four climate variables and elevation. Over all species, the median difference in distribution centroids was 234 km, and median values of all five environmental variables were highly correlated, although there were a few species outliers for each variable. We also acquired species’ elevational distribution mid-points (mid-point between minimum and maximum elevational extent) from the literature; median elevations from point occurrences and ranges were consistently lower (median −420 m) than mid-points. We concluded that in most cases occurrence points were likely to produce better estimates of underlying environmental variables than range maps, although differences were often slight. We also concluded that elevational range mid-points were biased high, and that elevation distributions based on either points or range maps provided better estimates

    Quantum Numbers for Excitations of Bose-Einstein Condensates in 1D Optical Lattices

    Full text link
    The excitation spectrum and the band structure of a Bose-Einstein condensate in a periodic potential are investigated. Analyses within full 3D systems, finite 1D systems, and ideal periodic 1D systems are compared. We find two branches of excitations in the spectra of the finite 1D model. The band structures for the first and (part of) the second band are compared between a finite 1D and the fully periodic 1D systems, utilizing a new definition of a effective wavenumber and a phase-slip number. The upper and lower edges of the first gap coincide well between the two cases. The remaining difference is explained by the existence of the two branches due to the finite-size effect.Comment: 5 pages, 9 figure
    • …
    corecore