45 research outputs found
Assessing the impact of a health intervention via user-generated Internet content
Assessing the effect of a health-oriented intervention by traditional epidemiological methods is commonly based only on population segments that use healthcare services. Here we introduce a complementary framework for evaluating the impact of a targeted intervention, such as a vaccination campaign against an infectious disease, through a statistical analysis of user-generated content submitted on web platforms. Using supervised learning, we derive a nonlinear regression model for estimating the prevalence of a health event in a population from Internet data. This model is applied to identify control location groups that correlate historically with the areas, where a specific intervention campaign has taken place. We then determine the impact of the intervention by inferring a projection of the disease rates that could have emerged in the absence of a campaign. Our case study focuses on the influenza vaccination program that was launched in England during the 2013/14 season, and our observations consist of millions of geo-located search queries to the Bing search engine and posts on Twitter. The impact estimates derived from the application of the proposed statistical framework support conventional assessments of the campaign
A systematic review on integration mechanisms in human and animal health surveillance systems with a view to addressing global health security threats
Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles
High-starch diets alter equine faecal microbiota and increase behavioural reactivity
Gut microbiota have been associated with health, disease and behaviour in several species and are an important link in gut-brain axis communication. Diet plays a key role in affecting the composition of gut microbiota. In horses, high-starch diets alter the hindgut microbiota. High-starch diets are also associated with increased behavioural reactivity in horses. These changes in microbiota and behaviour may be associated. This study compares the faecal microbiota and behaviour of 10 naïve ponies. A cross-over design was used with experimental groups fed high-starch (HS) or high-fibre (HF) diets. Results showed that ponies were more reactive and less settled when being fed the HS diet compared to the HF diet. Irrespective of diet, the bacterial profile was dominated by two main phyla, Firmicutes, closely followed by Bacteroidetes. However, at lower taxonomic levels multivariate analysis of 16S rRNA gene sequencing data showed diet affected faecal microbial community structure. The abundance of 85 OTUs differed significantly related to diet. Correlative relationships exist between dietary induced alterations to faecal microbiota and behaviour. Results demonstrate a clear link between diet, faecal microbial community composition and behaviour. Dietary induced alterations to gut microbiota play a role in affecting the behaviour of the host
Web-based infectious disease surveillance systems and public health perspectives: a systematic review
This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.Abstract
Background
Emerging and re-emerging infectious diseases are a significant public health concern, and early detection and immediate response is crucial for disease control. These challenges have led to the need for new approaches and technologies to reinforce the capacity of traditional surveillance systems for detecting emerging infectious diseases. In the last few years, the availability of novel web-based data sources has contributed substantially to infectious disease surveillance. This study explores the burgeoning field of web-based infectious disease surveillance systems by examining their current status, importance, and potential challenges.
Methods
A systematic review framework was applied to the search, screening, and analysis of web-based infectious disease surveillance systems. We searched PubMed, Web of Science, and Embase databases to extensively review the English literature published between 2000 and 2015. Eleven surveillance systems were chosen for evaluation according to their high frequency of application. Relevant terms, including newly coined terms, development and classification of the surveillance systems, and various characteristics associated with the systems were studied.
Results
Based on a detailed and informative review of the 11 web-based infectious disease surveillance systems, it was evident that these systems exhibited clear strengths, as compared to traditional surveillance systems, but with some limitations yet to be overcome. The major strengths of the newly emerging surveillance systems are that they are intuitive, adaptable, low-cost, and operated in real-time, all of which are necessary features of an effective public health tool. The most apparent potential challenges of the web-based systems are those of inaccurate interpretation and prediction of health status, and privacy issues, based on an individuals internet activity.
Conclusion
Despite being in a nascent stage with further modification needed, web-based surveillance systems have evolved to complement traditional national surveillance systems. This review highlights ways in which the strengths of existing systems can be maintained and weaknesses alleviated to implement optimal web surveillance systems
Survey for papillomatous digital dermatitis in Australian dairy cattle
Objective To determine whether Treponema-associated papillomatous digital dermatitis (PDD) occurs in Australian dairy cattle. Design Mail-out questionnaire and histological and bacteriological examination of biopsy tissue from suspect PDD lesions. Procedure The questionnaire was mailed to 375 veterinarians to evaluate their knowledge of PDD, determine if they had observed the disease in Australian dairy cattle, and to request biopsy material from suspicious cases. Biopsies were examined for histological and bacteriological evidence of PDD, including for the presence of spirochaetes. Results Eighty-eight replies to the questionnaire were received (23.5%). Of 52 respondents who were aware of PDD as a possible cause of lameness, 26 reported observing the condition in Australian cattle. Of 32 respondents who were unaware of the condition, 6 reported observing lesions that might have been PDD. The majority of reports of PDD-like lesions came from the southern Australian states, the condition occurring during periods of high rainfall and proving responsive to topical or parenteral application of antimicrobials. Biopsies from five erosive lesions showed histological similarity to PDD whereas biopsies from five proliferative lesions were consistent with chronic inflammation, fibroma or cutaneous papilloma. The presence of spirochaetes was not demonstrated in any of the lesions by histological or bacteriological methods. Conclusion Anecdotal reports and analysis of biopsy material confirm that a condition similar to PDD does occur sporadically in dairy cattle in southern Australia. However, this condition has so far not been shown to be associated with the presence of spirochaetes in the lesions
Spatio-temporal investigation of the 1918 influenza pandemic in military populations indicates two different viruses.
There were multiple waves of influenza-like illness in 1918, the last of which resulted in a highly lethal pandemic killing 50 million people. It is difficult to study the initial waves of influenza-like illness in early 1918 because few deaths resulted and few morbidity records exist. Using extant military mortality records, we constructed mortality maps based on location of burial in France and Belgium in the British Army, and on home town in Vermont and New York in the USA Army. Differences between early and more lethal later waves in late 1918 were consistent with historical descriptions in France. The maps of Vermont and New York support the hypothesis that previous exposure may have conferred a degree of protection against subsequent infections; soldiers from rural areas, which were likely to have experienced less mixing than soldiers from urban areas, were at higher risk of mortality. Differences between combat and disease mortality in 1918 were consistent with limited influenza virus circulation during the early 1918 wave. We suggest that it is likely that more than one influenza virus was circulating in 1918, which might help explain the higher mortality rates in those unlikely to have been infected in early 1918