22 research outputs found

    Cytokine Detection and Modulation in Acute Graft vs. Host Disease in Mice

    Get PDF
    A murine model for acute lethal graft vs. host disease (GVHD) was used to study the role that a number of cytokines play in the development of lethal GVHD. In this study we focused on the role of IL-1, IL-2, IL-4, IL-6, IFN-γ and TNF-α. Lethally irradiated (C57BL × CBA)F1 mice were reconstituted either with 107 allogeneic BALB/c spleen cells or with a similar number of syngeneic cells, as a control. A significant rise in serum levels of IL-6, TNF-α and IFN-γ levels was found in allogeneically reconstituted mice. This is in contrast to the syngeneic control group in which no rise was seen. Serum IL-2 and IL-4 levels were below the detection limit. In the supernatant of Con A stimulated spleen cells from allogeneically reconstituted mice IL-6, IFN-γ and TNF-α concentrations were increased. The expression of mRNA for cytokines as detected by reverse transcription PCR was studied in spleen cells. In the allogeneic reconstituted mice the mRNA expression of IL-1α, IL-2, IL-6, IFN-γ and TNF-α displayed faster kinetics compared with that in syngeneic reconstituted mice. The effect of treatment with recombinant cytokines, antibodies to cytokines and to cytokine receptors on the development of GVHD was investigated. Administration of recombinant IL-2 to allogeneically reconstituted mice strongly increased the morbidity and mortality whereas injection of IL-1α and TNF-α did not influence survival. Administration of antibodies against IL-2 or the IL-2 receptor decreased the morbidity and mortality. Anti-IL-6, anti-IFN-γ, and anti-TNF-α mAB, on the other hand, did not affect the morbidity and mortality of GVHD. The results of this study suggest successive waves of cytokine-secreting cell populations consistent with the induction of an inflammatory response in the development of acute GVH disease

    Minimal residual disease and circulating tumor cells in breast cancer

    Get PDF
    Tumor cell dissemination in bone marrow or other organs is thought to represent an important step in the metastatic process. The detection of bone marrow disseminated tumor cells is associated with worse outcome in early breast cancer. Moreover, the detection of peripheral blood circulating tumor cells is an adverse prognostic factor in metastatic breast cancer, and emerging data suggest that this is also true for early disease. Beyond enumeration, the characterization of these cells has the potential to improve risk assessment, treatment selection and monitoring, and the development of novel therapeutic agents, and to advance our understanding of the biology of metastasis

    An Immunomagnetic Single-Platform Image Cytometer for Cell Enumeration Based on Antibody Specificity

    Get PDF
    Simplification of cell enumeration technologies is necessary, especially for resource-poor countries, where reliable and affordable enumeration systems are greatly needed. In this paper, an immunomagnetic single-platform image cytometer (SP ICM) for cell enumeration based on antibody specificity is reported. A chamber/magnet assembly was designed such that the immunomagnetically labeled, acridine orange-stained cells in a blood sample moved to the surface of the chamber, where a fluorescent image was captured and analyzed for cell enumeration. The system was evaluated by applying one kind of antibody to count leukocytes and one kind for each leukocyte subpopulation: CD45 for leukocytes, CD3 for T lymphocytes, and CD19 for B lymphocytes. Excellent precision and linearity were achieved. Moreover, these cell counts, each from blood specimens of 42 to 52 randomly selected patients, were compared with those obtained by SP (TruCount) and dual-platform (DP) flow cytometry (FCM) technologies. The cell counts obtained by our system were in between those obtained from the TruCount and DP FCM methods; and good correlations were achieved (R ≥ 0.95). For CD4(+) counts, as we expected, the cell count by our system was significantly higher than the CD4(+) T-lymphocyte counts obtained by SP and DP FCM methods. Immunophenotyping of the immunomagnetically selected CD4(+) cells showed that, besides CD4(+) T lymphocytes, a proportion of the CD4(+) dim monocytes was also selected. Our system is a simple immunomagnetic SP ICM, which can potentially be used for enumeration of CD3(+) CD4(+) T lymphocytes in resource-poor countries if an additional CD3 immunofluorescent label is applied

    Flow-Enhanced Nonlinear Magnetophoresis for High-Resolution Bioseparation

    Get PDF
    A new mode of transport is described that was capable of high-resolution separation of superparamagnetic materials from complex mixtures based on their size. Laminar flow and a rotating external magnetic field were applied to superparamagnetic beads assembled on a semiperiodic micromagnet array. Beads at the edge of the micromagnet array oscillated in-phase with the external magnetic field with an amplitude that decreased with increasing frequency, omega, until they reached an immobilization frequency, omega(nu) where the beads stopped moving. Laminar flow along the edge of the array could be tuned to sweep the beads for which omega \u3c omega(i) downstream at a velocity that increased with size while leaving beads for which omega \u3e omega(i) undisturbed. Flow-enhanced nonlinear magnetophoresis (F-NLM) promises to enable multiple superparamagnetc bead types to be used in the fractionation of cells and implementation of diagnostic assays

    Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes

    No full text
    Analysis of minimal residual disease (MRD) can predict outcome in acute lymphoblastic leukemia (ALL). A large prospective study in childhood ALL has shown that MRD analysis using immunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements as PCR targets can identify good and poor prognosis groups of substantial size that might profit from treatment adaptation. This MRD-based risk group assignment was based on the kinetics of tumor reduction. Consequently, the level of MRD has to be defined precisely in follow-up samples. However, current PCR methods do not allow easy and accurate quantification. We have tested 'real-time' quantitative PCR (RQ-PCR) using the TaqMan technology and compared its sensitivity with two conventional MRD-PCR methods, ie dot-blot and liquid hybridization of PCR amplified Ig/TCR gene rearrangements using clone-specific radioactive probes. In RQ-PCR the generated specific PCR product is measured at each cycle ('real-time') by cleavage of a fluorogenic intrinsic TaqMan probe. The junctional regions of rearranged Ig/TCR genes define the specificity and sensitivity of PCR-based MRD detection in ALL and are generally used to design a patient-specific probe. In the TaqMan technology we have chosen for the same approach with the design of patient-specific TaqMan probes at the position of the junctional regions. We developed primers/probe combinations for RQ-PCR analysis of a total of three IGH, two TCRD, two TCRG and three IGK gene rearrangements in four randomly chosen precursor-B-ALL. In one patient, 12 bone marrow follow-up samples were analyzed for the presence of MRD using an IGK PCR target. The sensitivity of the RQ-PCR technique appeared to be comparable to the dot-blot method, but less sensitive than liquid hybridization. Although it still is a relatively expensive method, RQ-PCR allows sensitive, reproducible and quantitative MRD detection with a high throughput of samples providing possibilities for semi-automation. We consider this novel technique as an important step forward towards routinely performed diagnostic MRD studie

    Circulating tumor cells in small-cell lung cancer:a predictive and prognostic factor

    No full text
    BACKGROUND: Initial response of small-cell lung cancer (SCLC) to chemotherapy is high, and recurrences occur frequently, leading to early death. This study investigated the prognostic value of circulating tumor cells (CTCs) in patients with SCLC and whether changes in CTCs can predict response to chemotherapy. PATIENTS AND METHODS: In this multicenter prospective study, blood samples for CTC analysis were obtained from 59 patients with SCLC before, after one cycle, and at the end of chemotherapy. CTCs were measured using CellSearch® systems. RESULTS: At baseline, lower numbers of CTCs were observed for 21 patients with limited SCLC (median = 6, range 0-220) compared with 38 patients with extensive stage (median = 63, range 0-14 040). Lack of measurable CTCs (27% of patients) was associated with prolonged survival (HR 3.4; P ≤ 0.001). CTCs decreased after one cycle of chemotherapy; this decrease was not associated with tumor response after four cycles of chemotherapy. CTC count after the first cycle of chemotherapy was the strongest predictor for overall survival (HR 5.7; 95% CI 1.7-18.9; P = 0.004). CONCLUSION: Absolute CTCs after one cycle of chemotherapy in patients with SCLC is the strongest predictor for response on chemotherapy and survival. Patients with low initial CTC numbers lived longer than those with higher CTCs

    Bile canalicular dynamics in hepatocyte sandwich cultures

    No full text
    Many substances are hepatotoxic due to their ability to cause intrahepatic cholestasis. Therefore, there is a high demand for in vitro systems for the identification of cholestatic properties of new compounds. Primary hepatocytes cultivated in collagen sandwich cultures are known to establish bile canaliculi which enclose secreted biliary components. Cholestatic compounds are mainly known to inhibit bile excretion dynamics, but may also alter canalicular volume, or hepatocellular morphology. So far, techniques to assess time-resolved morphological changes of bile canaliculi in sandwich cultures are not available. In this study, we developed an automated system that quantifies dynamics of bile canaliculi recorded in conventional time-lapse image sequences. We validated the hepatocyte sandwich culture system as an appropriate model to study bile canaliculi in vitro by showing structural similarity measured as bile canaliculi length per hepatocyte to that observed in vivo. Moreover, bile canalicular excretion kinetics of CMFDA (5-chloromethylfluorescein diacetate) in sandwich cultures resembled closely the kinetics observed in vivo. The developed quantification technique enabled the quantification of dynamic changes in individual bile canaliculi. With this technique, we were able to clearly distinguish between sandwich cultures supplemented with dexamethasone and insulin from control cultures. In conclusion, the automated quantification system offers the possibility to systematically study the causal relationship between disturbed bile canalicular dynamics and cholestasis
    corecore