7,462 research outputs found

    Electronic spin-triplet nematic with a twist

    Get PDF
    We analyze a model of itinerant electrons interacting through a quadrupole density-density repulsion in three dimensions. At the mean field level, the interaction drives a continuous Pomeranchuk instability towards dd-wave, spin-triplet nematic order, which simultaneously breaks the SU(2) spin-rotation and spatial rotational symmetries. This order results in spin antisymmetric, elliptical deformations of the Fermi surfaces of up and down spins. We show that the effects of quantum fluctuations are similar to those in metallic ferromagnets, rendering the nematic transition first-order at low temperatures. Using the fermionic quantum order-by-disorder approach to self-consistently calculate fluctuations around possible modulated states, we show that the first-order transition is pre-empted by the formation of a nematic state that is intertwined with a helical modulation in spin space. Such a state is closely related to dd-wave bond density wave order in square-lattice systems. Moreover, we show that it may coexist with a modulated, pp-wave superconducting state.Comment: 15 pages, 9 figure

    Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    Full text link
    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase-transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of gg-modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the star's crust and the emergence of a set of shear modes.Comment: 27 pages, 14 figure

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc

    Spontaneous CP Violation in the Next-to-Minimal Supersymmetric Standard Model Revisited

    Get PDF
    We re-examine spontaneous CP violation at the tree level in the context of the next-to-minimal supersymmetric standard model (NMSSM) with two Higgs doublets and a gauge singlet field. We analyse the most general Higgs potential without a discrete Z_3 symmetry, and derive an upper bound on the mass of the lightest neutral Higgs boson consistent with present experimental data. We investigate, in particular, its dependence on the admixture and CP-violating phase of the gauge singlet field, as well as on tan(beta). To assess the viability of the spontaneous CP violation scenario, we estimate epsilon_K by applying the mass insertion approximation. We find that a non-trivial flavour structure in the soft-breaking A terms is required to account for the observed CP violation in the neutral kaon sector. Furthermore, combining the minimisation conditions for spontaneous CP violation with the constraints coming from K0-K0bar mixing, we find that the upper bound on the lightest Higgs-boson mass becomes stronger. We also point out that the electric dipole moments of electron and neutron are a serious challenge for SUSY models with spontaneous CP violation.Comment: 19 pages, LaTeX2e, 5 figures; matches the published versio

    From Equilibrium to Steady-State Dynamics after Switch-On of Shear

    Full text link
    A relation between equilibrium, steady-state, and waiting-time dependent dynamical two-time correlation functions in dense glass-forming liquids subject to homogeneous steady shear flow is discussed. The systems under study show pronounced shear thinning, i.e., a significant speedup in their steady-state slow relaxation as compared to equilibrium. An approximate relation that recovers the exact limit for small waiting times is derived following the integration through transients (ITT) approach for the nonequilibrium Smoluchowski dynamics, and is exemplified within a schematic model in the framework of the mode-coupling theory of the glass transition (MCT). Computer simulation results for the tagged-particle density correlation functions corresponding to wave vectors in the shear-gradient directions from both event-driven stochastic dynamics of a two-dimensional hard-disk system and from previously published Newtonian-dynamics simulations of a three-dimensional soft-sphere mixture are analyzed and compared with the predictions of the ITT-based approximation. Good qualitative and semi-quantitative agreement is found. Furthermore, for short waiting times, the theoretical description of the waiting time dependence shows excellent quantitative agreement to the simulations. This confirms the accuracy of the central approximation used earlier to derive fluctuation dissipation ratios (Phys. Rev. Lett. 102, 135701). For intermediate waiting times, the correlation functions decay faster at long times than the stationary ones. This behavior is predicted by our theory and observed in simulations.Comment: 16 pages, 12 figures, submitted to Phys Rev

    Spin Waves in Quantum Antiferromagnets

    Full text link
    Using a self-consistent mean-field theory for the S=1/2S=1/2 Heisenberg antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for the dispersion. It is exact in one dimension (d=1d=1) and agrees well with numerical results in d=2d=2. With an expansion in powers of the inverse coordination number 1/Z1/Z (Z=2dZ=2d) we investigate if this expression can be {\em exact} for all dd. The projection method of Mori-Zwanzig is used for the {\em dynamical} spin susceptibility. We find that the expression of Kr\"uger and Schuck deviates in order 1/Z21/Z^2 from our rigorous result. Our method is generalised to arbitrary spin SS and to models with easy-axis anisotropy \D. It can be systematically improved to higher orders in 1/Z1/Z. We clarify its relation to the 1/S1/S expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette

    Aspects of the Mass Distribution of Interstellar Dust Grains in the Solar System from In-Situ Measurements

    Get PDF
    The in-situ detection of interstellar dust grains in the Solar System by the dust instruments on-board the Ulysses and Galileo spacecraft as well as the recent measurements of hyperbolic radar meteors give information on the properties of the interstellar solid particle population in the solar vicinity. Especially the distribution of grain masses is indicative of growth and destruction mechanisms that govern the grain evolution in the interstellar medium. The mass of an impacting dust grain is derived from its impact velocity and the amount of plasma generated by the impact. Because the initial velocity and the dynamics of interstellar particles in the Solar System are well known, we use an approximated theoretical instead of the measured impact velocity to derive the mass of interstellar grains from the Ulysses and Galileo in-situ data. The revised mass distributions are steeper and thus contain less large grains than the ones that use measured impact velocities, but large grains still contribute significantly to the overall mass of the detected grains. The flux of interstellar grains with masses >1014kg> 10^{-14} {\rm kg} is determined to be 1106m2s11\cdot 10^{-6} {\rm m}^{-2} {\rm s}^{-1}. The comparison of radar data with the extrapolation of the Ulysses and Galileo mass distribution indicates that the very large (m>1010kgm > 10^{-10} {\rm kg}) hyperbolic meteoroids detected by the radar are not kinematically related to the interstellar dust population detected by the spacecraft.Comment: 14 pages, 11 figures, to appear in JG

    Colloid-colloid and colloid-wall interactions in driven suspensions

    Full text link
    We investigate the non-equilibrium fluid structure mediated forces between two colloids driven through a suspension of mutually non-interacting Brownian particles as well as between a colloid and a wall in stationary situations. We solve the Smoluchowski equation in bispherical coordinates as well as with a method of reflections, both in linear approximation for small velocities and numerically for intermediate velocities, and we compare the results to a superposition approximation considered previously. In particular we find an enhancement of the friction (compared to the friction on an isolated particle) for two colloids driven side by side as well as for a colloid traveling along a wall. The friction on tailgating colloids is reduced. Colloids traveling side by side experience a solute induced repulsion while tailgating colloids are attracted to each other.Comment: 8 Pages, 8 figure

    From bcc to fcc: interplay between oscillating long-range and repulsive short-range forces

    Full text link
    This paper supplements and partly extends an earlier publication, Phys. Rev. Lett. 95, 265501 (2005). In dd-dimensional continuous space we describe the infinite volume ground state configurations (GSCs) of pair interactions \vfi and \vfi+\psi, where \vfi is the inverse Fourier transform of a nonnegative function vanishing outside the sphere of radius K0K_0, and ψ\psi is any nonnegative finite-range interaction of range r0γd/K0r_0\leq\gamma_d/K_0, where γ3=6π\gamma_3=\sqrt{6}\pi. In three dimensions the decay of \vfi can be as slow as r2\sim r^{-2}, and an interaction of asymptotic form cos(K0r+π/2)/r3\sim\cos(K_0r+\pi/2)/r^3 is among the examples. At a dimension-dependent density ρd\rho_d the ground state of \vfi is a unique Bravais lattice, and for higher densities it is continuously degenerate: any union of Bravais lattices whose reciprocal lattice vectors are not shorter than K0K_0 is a GSC. Adding ψ\psi decreases the ground state degeneracy which, nonetheless, remains continuous in the open interval (ρd,ρd)(\rho_d,\rho_d'), where ρd\rho_d' is the close-packing density of hard balls of diameter r0r_0. The ground state is unique at both ends of the interval. In three dimensions this unique GSC is the bcc lattice at ρ3\rho_3 and the fcc lattice at ρ3=2/r03\rho_3'=\sqrt{2}/r_0^3.Comment: Published versio

    A dynamic density functional theory for particles in a flowing solvent

    Full text link
    We present a dynamic density functional theory (dDFT) which takes into accou nt the advection of the particles by a flowing solvent. For potential flows we can use the same closure as in the absence of solvent flow. The structure of the resulting advected dDFT suggests that it could be used for non-potential flows as well. We apply this dDFT to Brownian particles (e.g., polymer coils) in a solvent flowing around a spherical obstacle (e.g., a colloid) and compare the results with direct simulations of the underlying Brownian dynamics. Although numerical limitations do not allow for an accurate quantitative check of the advected dDFT both show the same qualitative features. In contrast to previous works which neglected the deformation of the flow by the obstacle, we find that the bow-wave in the density distribution of particles in front of the obstacle as well as the wake behind it are reduced dramatically. As a consequence the friction force exerted by the (polymer) particles on the colloid can be reduced drastically.Comment: 7 pages, 5 figures, 2 tables, submitte
    corecore