1,391 research outputs found
Sequential Least-Squares Using Orthogonal Transformations
Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission
Integration-free interval doubling for Riccati equation solutions
Various algorithms are given for the case of constant coefficients. The algorithms are based on two ideas: first, relate the Re solution with general initial conditions to anchored RE solutions; and second, when the coefficients are constant the anchored solutions have a basic shift-invariance property. These ideas are used to construct an integration free superlinearly convergent iterative solution to the algebraic RE. The algorithm, arranged in square-root form, is thought to be numerically stable and competitive with other methods of solving the algebraic RE
A parameter estimation subroutine package
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. A library of FORTRAN subroutines were developed to facilitate analyses of a variety of estimation problems. An easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage are presented. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics
A parameter estimation subroutine package
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. FORTRAN subroutines have been developed to facilitate analyses of a variety of parameter estimation problems. Easy to use multipurpose sets of algorithms are reported that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used
A parameter estimation subroutine package
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. In this report we document a library of FORTRAN subroutines that have been developed to facilitate analyses of a variety of estimation problems. Our purpose is to present an easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given along with examples of how these routines can be used. The following outline indicates the scope of this report: Section (1) introduction with reference to background material; Section (2) examples and applications; Section (3) subroutine directory summary; Section (4) the subroutine directory user description with input, output, and usage explained; and Section (5) subroutine FORTRAN listings. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses
Ambulance Services in Northwest South Dakota
The purpose of this publication is to point out the characteristics of existing ambulance services and analyze the cost and capabilities of three alternative ambulance systems available for use in Northwest South Dakota
Supply and Demand of Medical Services in Northwest South Dakota: An Economic Analysis
The purpose of this publication is to give a general description of the problems facing the Northwest South Dakota area in providing medical and health services and to analyze some of the factors affecting the future demand for such services and the supply of resources available for meeting that demand. With this information, policy makers and rural community leaders will have a better basis for making relevant decisions on the coordination of health services within their area to provide accessibility to health services at the least possible cost, consistent with desired quality standards
A Millimeter-wave Galactic Plane Survey with the BICEP Polarimeter
In order to study inflationary cosmology and the Milky Way Galaxy's composition and magnetic field structure, Stokes I, Q, and U maps of the Galactic plane covering the Galactic longitude range 260° < ℓ < 340° in three atmospheric transmission windows centered on 100, 150, and 220 GHz are presented. The maps sample an optical depth 1 ≾ AV ≾ 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. The polarization angles in all three bands are generally perpendicular to those measured by starlight polarimetry as expected and show changes in the structure of the Galactic magnetic field on the scale of 60°. The frequency spectrum of degree-scale Galactic emission is plotted between 23 and 220 GHz (including WMAP data) and is fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Polarized emission is detected over the entire region within two degrees of the Galactic plane, indicating the large-scale magnetic field is oriented parallel to the plane of the Galaxy. A trend of decreasing polarization fraction with increasing total intensity is observed, ruling out the simplest model of a constant Galactic magnetic field orientation along the line of sight in the Galactic plane. A generally increasing trend of polarization fraction with electromagnetic frequency is found, varying from 0.5%-1.5% at frequencies below 50 GHz to 2.5%-3.5% above 90 GHz. The effort to extend the capabilities of BICEP by installing 220 GHz band hardware is described along with analysis of the new band
- …