83 research outputs found

    Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    Get PDF
    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil

    Electromagnetic levitation coil fabrication technique for MSFC containerless processing facilities

    Get PDF
    A technique is described for more reproducible fabrication of electromagnetic levitation coils. A split mandrel was developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, a full day was required to fabricate a levitation coil and the success rate for a functional coil was only 50 percent. About eight coils may be completed in one day using the technique developed and 95 percent of them are good levitation coils

    A new XRD method to quantify plate and lath martensites of hardened medium-carbon steel

    Get PDF
    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First of all, the two martensites are assumed to have body centre tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping (200) diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonisation of the as-quenched martensites. Keywords: Gaussian peak-fitting, martensite carbon content, martensite tetragonal ratio, medium-carbon steels, Xray diffractio

    Grain refinement of Al-Mg-Sc alloy by ultrasonic treatment

    Get PDF
    In foundry practice, ultrasonic treatment has been used as an efficient technique to achieve grain refinement in aluminium and magnesium alloys. This article shows the strong effect of pouring temperature and ultrasonic treatment at various temperatures on the grain refinement of Al-1 wt% Mg-0.3 wt% Sc alloy. Without ultrasonic treatment, a fine grain structure was obtained at the pouring temperature of 700 °C. The average grain size sharply decreases from 487 ± 20 to 103 ± 2 μm when the pouring temperature decreases from 800 to 700 °C. Ultrasonic vibration proved to be a potential grain refinement technique with a wide range of pouring tem- perature. A microstructure with very fine and homogeneous grains was obtained by applying ultrasonic treatment to the melt at the temperature range between 700 and 740 °C, before pouring. Cavitation-enhanced hetero- geneous nucleation is the mechanism proposed to explain grain refinement by ultrasound in this alloy. Moreover, ultrasonic treatment of the melt was found to lead to cast samples with hardness values similar to those obtained in samples submitted to precipitation hardening, suggesting that ultrasonic treatment can avoid carrying out heat treatment of cast parts.This research was supported by The Project Bridging The Gap, funded by the Erasmus Mundus External Cooperation Window Programme. Acknowledgements also to the University of Minho, for the provision of research facilities

    C−Ge system

    No full text
    • …
    corecore