8,080 research outputs found

    POTENTIAL CONTRIBUTION OF ENERGETIC USEFUL DOMESTIC WASTE TO THE ENERGY SUPPLY OF LITHUANIA

    Get PDF
    The energy potential of domestic waste in Lithuania is 1411 GWh annually. In the case of the introduction of an extensive material recycling of the domestic waste, this amount would be reduced to 727 GWh per annual. Two variants of thermal waste treatment processes were taken into consideration: incineration by great furnaces and gasification followed by the incineration in gas power plants. The calculation of the necessary capacities for the thermal treatment of the domestic waste of every district is based on the annual availability of the plants of 75 %. Finally 4 scenarios arise, considering both the incineration on grate furnaces and the gasification in combination with the current energy potential of domestic waste and the potential after the introduction of extensive material recycling possible in the future

    Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays

    Get PDF
    For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude

    Thermodynamic of the Ghost Dark Energy Universe

    Full text link
    Recently, the vacuum energy of the QCD ghost in a time-dependent background is proposed as a kind of dark energy candidate to explain the acceleration of the Universe. In this model, the energy density of the dark energy is proportional to the Hubble parameter HH, which is the Hawking temperature on the Hubble horizon of the Friedmann-Robertson-Walker (FRW) Universe. In this paper, we generalized this model and choice the Hawking temperature on the so-called trapping horizon, which will coincides with the Hubble temperature in the context of flat FRW Universe dominated by the dark energy component. We study the thermodynamics of Universe with this kind of dark energy and find that the entropy-area relation is modified, namely, there is an another new term besides the area term.Comment: 8 pages, no figure

    Formation of antiwaves in gap-junction-coupled chains of neurons

    Full text link
    Using network models consisting of gap junction coupled Wang-Buszaki neurons, we demonstrate that it is possible to obtain not only synchronous activity between neurons but also a variety of constant phase shifts between 0 and \pi. We call these phase shifts intermediate stable phaselocked states. These phase shifts can produce a large variety of wave-like activity patterns in one-dimensional chains and two-dimensional arrays of neurons, which can be studied by reducing the system of equations to a phase model. The 2\pi periodic coupling functions of these models are characterized by prominent higher order terms in their Fourier expansion, which can be varied by changing model parameters. We study how the relative contribution of the odd and even terms affect what solutions are possible, the basin of attraction of those solutions and their stability. These models may be applicable to the spinal central pattern generators of the dogfish and also to the developing neocortex of the neonatal rat

    The second US Naval Observatory CCD Astrograph Catalog (UCAC2)

    Full text link
    The second USNO CCD Astrograph Catalog, UCAC2 was released in July 2003. Positions and proper motions for 48,330,571 sources (mostly stars) are available on 3 CDs, supplemented with 2MASS photometry for 99.5% of the sources. The catalog covers the sky area from -90 to +40 degrees declination, going up to +52 in some areas; this completely supersedes the UCAC1 released in 2001. Current epoch positions are obtained from observations with the USNO 8-inch Twin Astrograph equipped with a 4k CCD camera. The precision of the positions are 15 to 70 mas, depending on magnitude, with estimated systematic errors of 10 mas or below. Proper motions are derived by utilizing over 140 ground-and space-based catalogs, including Hipparcos/Tycho, the AC2000.2, as well as yet unpublished re-measures of the AGK2 plates and scans from the NPM and SPM plates. Proper motion errors are about 1 to 3 mas/yr for stars to 12th magnitude, and about 4 to 7 mas/yr for fainter stars to 16th magnitude. The observational data, astrometric reductions, results, and important information for the users of this catalog are presented.Comment: accepted by AJ, AAS LaTeX, 14 figures, 10 table

    Stability and Symmetry Breaking in Metal Nanowires

    Full text link
    A general linear stability analysis of simple metal nanowires is presented using a continuum approach which correctly accounts for material-specific surface properties and electronic quantum-size effects. The competition between surface tension and electron-shell effects leads to a complex landscape of stable structures as a function of diameter, cross section, and temperature. By considering arbitrary symmetry-breaking deformations, it is shown that the cylinder is the only generically stable structure. Nevertheless, a plethora of structures with broken axial symmetry is found at low conductance values, including wires with quadrupolar, hexapolar and octupolar cross sections. These non-integrable shapes are compared to previous results on elliptical cross sections, and their material-dependent relative stability is discussed.Comment: 12 pages, 4 figure

    First observation of medium-spin excitations in the 138Cs nucleus

    Get PDF
    Medium-spin, yrast excitations in the 138Cs nucleus, populated in the spontaneous fission of 248Cm, were observed for the first time. 138Cs was studied by means of prompt γ-ray spectroscopy using the EUROGAM2 array. The newly observed yrast cascade, built on the known 6- isomer at 80 keV, was successfully described by shell model calculations. Analogously to the 136I isotone, the 6- isomer in 138Cs has the \ensuremath{(\pi g_{7/2} ^4 d_{5/2} \nu f_{7/2})_{6^-}} dominating configuration and the 7- excitation, located 175 keV above, corresponds to the \ensuremath{(\pi g_{7/2} ^3 d_{5/2}^2 \nu f_{7/2})_{7^-}} as dominating configuration. Similarly as in 136I, changing the position of the d 5/2 proton orbital improves the reproduction of the data. However, in 138Cs the energy of this orbital should be increased compared to its energy in 133Sb, to get the best description, in contrast to 136I and 135Sb, where it had to be decreased. The best reproduction of excitation energies in 138Cs is obtained assuming that the πd 5/2 orbital in 138Cs is located about 100 keV higher than in 133Sb. These observations suggest that the lowering of the d 5/2 s.p. energy in 135Sb is not a physical effect due to the appearance of a neutron skin, as proposed by other authors, but rather an artifact due to some deficiency of the input data used in the shell model calculations in the region of the doubly magic 132Sn core

    A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction

    Get PDF
    This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed

    An adaptive technique for content-based image retrieval

    Get PDF
    We discuss an adaptive approach towards Content-Based Image Retrieval. It is based on the Ostensive Model of developing information needs—a special kind of relevance feedback model that learns from implicit user feedback and adds a temporal notion to relevance. The ostensive approach supports content-assisted browsing through visualising the interaction by adding user-selected images to a browsing path, which ends with a set of system recommendations. The suggestions are based on an adaptive query learning scheme, in which the query is learnt from previously selected images. Our approach is an adaptation of the original Ostensive Model based on textual features only, to include content-based features to characterise images. In the proposed scheme textual and colour features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, work-task oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. This is due to its ability to adapt to the user's need, its intuitiveness and the fluid way in which it operates. Studying and comparing the nature of the underlying information need, it emerges that our approach elicits changes in the user's need based on the interaction, and is successful in adapting the retrieval to match the changes. In addition, a preliminary study of the retrieval performance of the ostensive relevance feedback scheme shows that it can outperform a standard relevance feedback strategy in terms of image recall in category search
    corecore